Francisco Javier Medrano
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco Javier Medrano.
Biochemical Journal | 2015
Dolores Linde; Rebecca Pogni; Marina Cañellas; Fátima Lucas; Guallar; Maria Camilla Baratto; Adalgisa Sinicropi; Sáez-Jiménez; Cristina Coscolín; Antonio A. Romero; Francisco Javier Medrano; Francisco J. Ruiz-Dueñas; Ángel T. Martínez
Dye-decolorizing peroxidase (DyP) of Auricularia auricula-judae has been expressed in Escherichia coli as a representative of a new DyP family, and subjected to mutagenic, spectroscopic, crystallographic and computational studies. The crystal structure of DyP shows a buried haem cofactor, and surface tryptophan and tyrosine residues potentially involved in long-range electron transfer from bulky dyes. Simulations using PELE (Protein Energy Landscape Exploration) software provided several binding-energy optima for the anthraquinone-type RB19 (Reactive Blue 19) near the above aromatic residues and the haem access-channel. Subsequent QM/MM (quantum mechanics/molecular mechanics) calculations showed a higher tendency of Trp-377 than other exposed haem-neighbouring residues to harbour a catalytic protein radical, and identified the electron-transfer pathway. The existence of such a radical in H2O2-activated DyP was shown by low-temperature EPR, being identified as a mixed tryptophanyl/tyrosyl radical in multifrequency experiments. The signal was dominated by the Trp-377 neutral radical contribution, which disappeared in the W377S variant, and included a tyrosyl contribution assigned to Tyr-337 after analysing the W377S spectra. Kinetics of substrate oxidation by DyP suggests the existence of high- and low-turnover sites. The high-turnover site for oxidation of RB19 (kcat> 200 s−1) and other DyP substrates was assigned to Trp-377 since it was absent from the W377S variant. The low-turnover site/s (RB19 kcat ~20 s−1) could correspond to the haem access-channel, since activity was decreased when the haem channel was occluded by the G169L mutation. If a tyrosine residue is also involved, it will be different from Tyr-337 since all activities are largely unaffected in the Y337S variant.
Antimicrobial Agents and Chemotherapy | 2012
Astrid Pérez; Margarita Poza; Jesús Aranda; Cristina Latasa; Francisco Javier Medrano; María Tomás; Antonio A. Romero; Iñigo Lasa; Germán Bou
ABSTRACT Control of membrane permeability is a key step in regulating the intracellular concentration of antibiotics. Efflux pumps confer innate resistance to a wide range of toxic compounds such as antibiotics, dyes, detergents, and disinfectants in members of the Enterobacteriaceae. The AcrAB-TolC efflux pump is involved in multidrug resistance in Enterobacter cloacae. However, the underlying mechanism that regulates the system in this microorganism remains unknown. In Escherichia coli, the transcription of acrAB is upregulated under global stress conditions by proteins such as MarA, SoxS, and Rob. In the present study, two clinical isolates of E. cloacae, EcDC64 (a multidrug-resistant strain overexpressing the AcrAB-TolC efflux pump) and Jc194 (a strain with a basal AcrAB-TolC expression level), were used to determine whether similar global stress responses operate in E. cloacae and also to establish the molecular mechanisms underlying this response. A decrease in susceptibility to erythromycin, tetracycline, telithromycin, ciprofloxacin, and chloramphenicol was observed in clinical isolate Jc194 and, to a lesser extent in EcDC64, in the presence of salicylate, decanoate, tetracycline, and paraquat. Increased expression of the acrAB promoter in the presence of the above-described conditions was observed by flow cytometry and reverse transcription-PCR, by using a reporter fusion protein (green fluorescent protein). The expression level of the AcrAB promoter decreased in E. cloacae EcDC64 derivates deficient in SoxS, RobA, and RamA. Accordingly, the expression level of the AcrAB promoter was higher in E. cloacae Jc194 strains overproducing SoxS, RobA, and RamA. Overall, the data showed that SoxS, RobA, and RamA regulators were associated with the upregulation of acrAB, thus conferring antimicrobial resistance as well as a stress response in E. cloacae. In summary, the regulatory proteins SoxS, RobA, and RamA were cloned and sequenced for the first time in this species. The involvement of these proteins in conferring antimicrobial resistance through upregulation of acrAB was demonstrated in E. cloacae.
Journal of Biological Chemistry | 1996
Francisco Javier Medrano; María Gasset; Consuelo López-Zumel; Pilar Usobiaga; José Luis García; Margarita Menéndez
The secondary and tertiary structures of the choline-dependent major pneumococcal autolysin LytA amidase and of its COOH-terminal domain, C-LytA, have been investigated by circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Deconvolution analysis shows that the far-UV CD spectrum of both proteins is governed by chiral contributions, ascribed to aromatic residue clusters contained in the COOH-terminal module. The secondary structure of LytA, determined from the FTIR spectral features of the amide I′ band, results in 19% of α-helix and tight loops, 47% of β-sheets, 23% of turns, and 11% of irregular structures. Similar values are obtained for C-LytA. The addition of choline significantly modifies the far- and near-UV CD spectra of LytA and C-LytA. These changes are attributed to alterations in the environment of their aromatic clusters, since the FTIR spectra indicate that the secondary structure is essentially unaffected. CD choline titration curves at different wavelengths show the existence of two types of binding sites/subunit. Data analysis assuming protein dimerization upon saturation of the high affinity sites reveals positive cooperativity between the low affinity sites. Thermal denaturation of both proteins occurs with the formation of unfolding intermediates and the presence of residual secondary structure in the final denatured state. The irreversibility of the thermal denaturation of LytA and C-LytA results from the collapse of the polypeptide chain into intermolecular extended structures. At saturating concentrations, choline prevents the formation of these structures in the isolated COOH-terminal module.
Acta Crystallographica Section D-biological Crystallography | 2014
Elena Fernández-Fueyo; Sandra Acebes; Francisco J. Ruiz-Dueñas; María Jesús Martínez; Antonio A. Romero; Francisco Javier Medrano; Victor Guallar; Ángel T. Martínez
The variable C-terminal tail of manganese peroxidases, a group of enzymes involved in lignin degradation, is implicated in their catalytic and stability properties, as shown by new crystal structures, molecular-simulation and directed-mutagenesis data. Based on this structural–functional evaluation, short and long/extralong manganese peroxidase subfamilies have been accepted; the latter are characterized by exceptional stability, while it is shown for the first time that the former are able to oxidize other substrates at the same site where manganese(II) is oxidized.
Journal of Biological Chemistry | 2014
Esther García-Fernández; Francisco Javier Medrano; Beatriz Galán; José Luis Dader García
Background: KstR represses expression of numerous genes responsible for cholesterol catabolism in Mycobacterium. Results: 3-Oxo-4-cholestenoic acid is identified as the inducer molecule of M. smegmatis KstR repressor. Conclusion: Oxidation of C3 and C26 of cholesterol is required to activate the system. Significance: The finding of the KstR inducer molecule represents new insights in developing new targets to fight against M. tuberculosis. Cholesterol degradation plays a prominent role in Mycobacterium tuberculosis infection; therefore, to develop new tools to combat this disease, we need to decipher the components comprising and regulating the corresponding pathway. A TetR-like repressor (KstR) regulates the upper part of this complex catabolic pathway, but the induction mechanism remains unknown. Using a biophysical approach, we have discovered that the inducer molecule of KstR in M. smegmatis mc2155 is not cholesterol but 3-oxo-4-cholestenoic acid, one of the first metabolic intermediates. Binding this compound induces dramatic conformational changes in KstR that promote the KstR-DNA interaction to be released from the operator, retaining its dimeric state. Our findings suggest a regulatory model common to all cholesterol degrading bacteria in which the first steps of the pathway are critical to its mineralization and explain the high redundancy of the enzymes involved in these initial steps.
Catalysis Science & Technology | 2016
Isabel Pardo; Gerard Santiago; Patrizia Gentili; Fátima Lucas; Emanuele Monza; Francisco Javier Medrano; Carlo Galli; Ángel T. Martínez; Victor Guallar; Susana Camarero
Iterative saturation mutagenesis was performed over six residues delimiting the substrate binding pocket of a high redox potential chimeric laccase with the aim of enhancing its activity over sinapic acid, a lignin-related phenol of industrial interest. In total, more than 15 000 clones were screened and two selected variants, together with the parent-type laccase, were purified and characterized. The new variants presented shifted pH activity profiles and enhanced turnover rates on sinapic acid and its methyl ester, whereas the oxidation of related phenols was not significantly enhanced. Neither the enzymes redox potential nor the mechanism of the reaction was affected. Quantum mechanics and molecular dynamics calculations were done to rationalize the effect of the selected mutations, revealing the critical role of the residues of the enzyme pocket to provide the precise binding of the substrate that enables an efficient electron transfer to the T1 copper. The results presented highlight the power of combining directed evolution and computational approaches to give novel solutions in enzyme engineering and to understand the mechanistic reasons behind them, offering new insights for further rational design towards specific targets.
PLOS ONE | 2015
Verónica Sáez-Jiménez; Elena Fernández-Fueyo; Francisco Javier Medrano; Antonio A. Romero; Ángel T. Martínez; Francisco J. Ruiz-Dueñas
Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved.
Acta Crystallographica Section D-biological Crystallography | 2016
Mercedes Spínola-Amilibia; Irene Davó-Siguero; Federico M. Ruiz; Elena Santillana; Francisco Javier Medrano; Antonio A. Romero
The type VI secretion system (T6SS) is a mechanism that is commonly used by pathogenic bacteria to infect host cells and for survival in competitive environments. This system assembles on a core baseplate and elongates like a phage puncturing device; it is thought to penetrate the target membrane and deliver effectors into the host or competing bacteria. Valine-glycine repeat protein G1 (VgrG1) forms the spike at the tip of the elongating tube formed by haemolysin co-regulated protein 1 (Hcp1); it is structurally similar to the T4 phage (gp27)3-(gp5)3 puncturing complex. Here, the crystal structure of full-length VgrG1 from Pseudomonas aeruginosa is reported at a resolution of 2.0 Å, which through a trimeric arrangement generates a needle-like shape composed of two main parts, the head and the spike, connected via a small neck region. The structure reveals several remarkable structural features pointing to the possible roles of the two main segments of VgrG1: the head as a scaffold cargo domain and the β-roll spike with implications in the cell-membrane puncturing process and as a carrier of cognate toxins.
Environmental Microbiology Reports | 2015
Julia García-Fernández; Beatriz Galán; Francisco Javier Medrano; José Luis Dader García
The interaction of KstR2-dependent promoters of the divergon constituted by the MSMEG_6000-5999 and MSMEG_6001-6004 operons of Mycobacterium smegmatis which encode the genes involved in the lower cholesterol degradative pathway has been characterized. Footprint analyses have demonstrated experimentally for the first time that KstR2 specifically binds to an operator region of 29 nucleotides containing the palindromic sequence AAGCAAGNNCTTGCTT. This region overlaps with the -10 and -35 boxes of the putative P(6000) and P(6001) divergent promoters, suggesting that KstR2 represses their transcription by preventing the binding of the ribonucleic acid polymerase. A three-dimensional model of the KstR2 protein revealed a typical TetR-type regulator folding with two domains, a deoxyribonucleic acid (DNA)-binding N-terminal domain and a regulator-binding C-terminal domain composed by three and six helices respectively. KstR2 is an all alpha protein as confirmed by circular dichroism. We have determined that M. smegmatis is able to grow using sitolactone (HIL) as the only carbon source and that this compound induces the kstR2 regulon in vivo. HIL or its open form 5OH-HIP were unable to release in vitro the KstR2-DNA operator interaction, suggesting that 5OH-HIP-CoA or a further derivative would induce the lower cholesterol catabolic pathway.
Acta Crystallographica Section D-biological Crystallography | 2015
Rayana R. Ruiz-Arellano; Francisco Javier Medrano; Abel Moreno; Antonio A. Romero
Biomineralization is the process by which living organisms produce minerals. One remarkable example is the formation of eggshells in birds. Struthiocalcins present in the ostrich (Struthio camellus) eggshell matrix act as biosensors of calcite growth during eggshell formation. Here, the crystal structure of struthiocalcin-1 (SCA-1) is reported in two different crystal forms. The structure is a compact single domain with an α/β fold characteristic of the C-type lectin family. In contrast to the related avian ovocleidin OC17, the electrostatic potential on the molecular surface is dominated by an acidic patch. Scanning electron microscopy combined with Raman spectroscopy indicates that these intramineral proteins (SCA-1 and SCA-2) induce calcium carbonate precipitation, leading to the formation of a stable form of calcite in the mature eggshell. Finally, the implications of these two intramineral proteins SCA-1 and SCA-2 in the nucleation of calcite during the formation of eggshells in ratite birds are discussed.