Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco José Pérez-Llarena is active.

Publication


Featured researches published by Francisco José Pérez-Llarena.


Antimicrobial Agents and Chemotherapy | 2013

OXA-235, a Novel Class D β-Lactamase Involved in Resistance to Carbapenems in Acinetobacter baumannii

Paul G. Higgins; Francisco José Pérez-Llarena; Esther Zander; Ana Fernández; Germán Bou; Harald Seifert

ABSTRACT We investigated the mechanism of carbapenem resistance in 10 Acinetobacter baumannii strains isolated from the United States and Mexico between 2005 and 2009. The detection of known metallo-β-lactamase or carbapenem-hydrolyzing oxacillinase (OXA) genes by PCR was negative. The presence of plasmid-encoded carbapenem resistance genes was investigated by transformation of A. baumannii ATCC 17978. Shotgun cloning experiments and sequencing were performed, followed by the expression of a novel β-lactamase in A. baumannii. Three novel OXA enzymes were identified, OXA-235 in 8 isolates and the amino acid variants OXA-236 (Glu173-Val) and OXA-237 (Asp208-Gly) in 1 isolate each. The deduced amino acid sequences shared 85% identity with OXA-134, 54% to 57% identities with the acquired OXA-23, OXA-24, OXA-58, and OXA-143, and 56% identity with the intrinsic OXA-51 and, thus, represent a novel subclass of OXA. The expression of OXA-235 in A. baumannii led to reduced carbapenem susceptibility, while cephalosporin MICs were unaffected. Genetic analysis revealed that blaOXA-235, blaOXA-236, and blaOXA-237 were bracketed between two ISAba1 insertion sequences. In addition, the presence of these acquired β-lactamase genes might result from a transposition-mediated mechanism. This highlights the propensity of A. baumannii to acquire multiple carbapenem resistance determinants.


Current Medicinal Chemistry | 2009

β-Lactamase Inhibitors: The Story so Far

Francisco José Pérez-Llarena; Germán Bou

: Antimicrobial resistance constitutes one of the major threats regarding pathogenic microorganisms. Gram-negative pathogens, such as Enterobacteriaceae (specially those producing extended-spectrum beta-lactamases), Pseudomonas aeruginosa, and Acinetobacter baumannii have acquired an important role in hospital infections, which is of particular concern because of the associated broad spectrum of antibiotic resistance. beta-Lactam antibiotics are considered the most successful antimicrobial agents since the beginning of the antibiotic era. Soon after the introduction of penicillin, microorganisms able to destroy this beta-lactam antibiotic were reported, thus emphasizing the facility of pathogenic microorganisms to develop beta-lactam resistance. In Gram-negative pathogens, beta-lactamase production is the main mechanism involved in acquired beta-lactam resistance. Four classes of beta-lactamases have been described: A, B, C, and D. Classes A, C, and D are enzymes with a serine moiety in the active centre that catalyzes hydrolysis of the beta -lactam ring through an acyl-intermediate of serine, whereas the class B enzymes require a metal cofactor (e.g. zinc in the natural form) to function, and for this reason, they are also referred to as metallo- beta-lactamases (MBLs). To overcome beta-lactamase-mediated resistance, a combination of beta-lactam and a beta-lactamase inhibitor, which protects the beta-lactam antibiotic from the activity of the beta-lactamase, has been widely used in the treatment of human infections. Although there are some very successful combinations of beta-lactams and beta-lactamase inhibitors, most of the inhibitors act against class A beta-lactamases and remain ineffective against class B, C, and D beta-lactamases. This review constitutes an update of the current status and knowledge regarding class A to D beta-lactamase inhibitors, as well as a summary of the drug discovery strategy currently used to identify new beta-lactamase inhibitors, mainly based on the knowledge of crystal structure of beta-lactamase enzymes.


Journal of Antimicrobial Chemotherapy | 2008

Structure–function studies of arginine at position 276 in CTX-M β-lactamases

Francisco José Pérez-Llarena; Mónica Cartelle; Susana Mallo; Alejandro Beceiro; Astrid Pérez; Rosa Villanueva; Antonio A. Romero; Richard Bonnet; Germán Bou

OBJECTIVES In order to assess whether or not the Arg-276 of CTX-M-type enzymes is equivalent to the Arg-244 of IRT-TEM-derivative enzymes, we replaced the former with six different amino acids, some of them previously described as involved in resistance to beta-lactamase inhibitors in TEM-IRT derivatives. We also investigated the role of Arg276 in cefotaxime hydrolysis. METHODS By site-directed mutagenesis and by use of the bla(CTX-M-1) gene as template, Arg-276 was replaced with six different amino acids (Trp, His, Cys, Asn, Gly and Ser). MICs of beta-lactams alone and in combination with beta-lactamase inhibitors were established. The seven enzymes (CTX-M-1 wild-type and six derived mutants) were purified by affinity chromatography, and kinetic parameters (k(cat), K(m), k(cat)/K(m)) towards cefalotin and cefotaxime were determined. Clavulanic acid IC(50) values were also assessed with all enzymes. RESULTS No increase in MICs of beta-lactam/beta-lactamase inhibitor combination was detected with any of the six CTX-M-1-derived mutants, in agreement with the clavulanic acid IC(50) values. The MICs of cefotaxime were clearly lower for the Escherichia coli harbouring the Trp, Cys, Ser and Gly CTX-M-1 mutant enzymes than for CTX-M-1, and these enzymes showed a clearly reduced catalytic efficiency towards cefotaxime. As regards cefalotin, there was a moderate reduction in catalytic efficiency for Cys and His. CONCLUSIONS Arg-276 in CTX-M-type beta-lactamases is not equivalent to Arg-244 in IRT-type enzymes. Position Arg-276 appears to be important for cefotaxime hydrolysis in CTX-M-type enzymes, although different effects were obtained regarding the replaced amino acid.


Journal of Antimicrobial Chemotherapy | 2010

Role of changes in the L3 loop of the active site in the evolution of enzymatic activity of VIM-type metallo-β-lactamases

María Merino; Francisco José Pérez-Llarena; Frédéric Kerff; Margarita Poza; Susana Mallo; Soraya Rumbo-Feal; Alejandro Beceiro; Carlos Juan; Antonio Oliver; Germán Bou

OBJECTIVES The new metallo-beta-lactamase VIM-13 has been recently characterized. In comparison with the VIM-1 enzyme, VIM-13 showed 19 amino acid differences, 2 of which were located in the active site centre. The main objective of the present study was to assess whether differences between VIM-1 and VIM-13 beta-lactamases in the active site, at His224Leu and Ser228Arg, are necessary and sufficient to explain the microbiological and biochemical differences between the two enzymes. METHODS Single mutants VIM-13 (Leu224His) and VIM-13 (Arg228Ser) and double mutant VIM-13 (Leu224His, Arg228Ser) were created by site-directed mutagenesis with the bla(VIM-13) gene as template. VIM-1, VIM-13 and VIM-13 (Leu224His, Arg228Ser) were purified by affinity chromatography, and kinetic parameters for these enzymes were obtained with ceftazidime, cefepime and ampicillin. RESULTS Ceftazidime and cefepime MICs (mg/L) for Escherichia coli TG1 expressing VIM-1, VIM-13, VIM-13 (Leu224His), VIM-13 (Arg228Ser) and VIM-13 (Leu224His, Arg228Ser) were >256 and 64, 6 and 4, 8 and 1, >256 and 8, and >256 and 48, respectively. VIM-1, VIM-13 and VIM-13 (Leu224His, Arg228Ser) revealed k(cat)/K(m) values (M(-1)s(-1)) for ceftazidime of 3.7 E(4), 1.9 E(4) and 10 E(4), respectively, and revealed k(cat)/K(m) values for cefepime of 3.5 E(5), 3 E(4) and 1.5 E(5), respectively. CONCLUSIONS Overall, the results showed that the two residues located in the L3 loop are sufficient to confer the substrate specificity of each enzyme, thus highlighting the importance of the L3 loop of the active site in the evolution of VIM-type metallo-beta-lactamases.


Antimicrobial Agents and Chemotherapy | 2011

Distant and new mutations in CTX-M-1 beta-lactamase affect cefotaxime hydrolysis.

Francisco José Pérez-Llarena; Frédéric Kerff; Olga Abian; Susana Mallo; María del Carmen Díaz Fernández; Moreno Galleni; Javier Sancho; Germán Bou

ABSTRACT The CTX-M β-lactamases are an increasingly prevalent group of extended-spectrum β-lactamases (ESBL). Point mutations in CTX-M β-lactamases are considered critical for enhanced hydrolysis of cefotaxime. In order to clarify the structural determinants of the activity against cefotaxime in CTX-M β-lactamases, screening for random mutations was carried out to search for decreased activity against cefotaxime, with the CTX-M-1 gene as a model. Thirteen single mutants with a considerable reduction in cefotaxime MICs were selected for biochemical and stability studies. The 13 mutated genes of the CTX-M-1 β-lactamase were expressed, and the proteins were purified for kinetic studies against cephalothin and cefotaxime (as the main antibiotics). Some of the positions, such as Val103Asp, Asn104Asp, Asn106Lys, and Pro107Ser, are located in the 103VNYN106 loop, which had been described as important in cefotaxime hydrolysis, although this has not been experimentally confirmed. There are four mutations located close to catalytic residues—Thr71Ile, Met135Ile, Arg164His, and Asn244Asp—that may affect the positioning of these residues. We show here that some distant mutations, such as Ala219Val, are critical for cefotaxime hydrolysis and highlight the role of this loop at the top of the active site. Other distant substitutions, such as Val80Ala, Arg191, Ala247Ser, and Val260Leu, are in hydrophobic cores and may affect the dynamics and flexibility of the enzyme. We describe here, in conclusion, new residues involved in cefotaxime hydrolysis in CTX-M β-lactamases, five of which are in positions distant from the catalytic center.


Frontiers in Microbiology | 2016

Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance

Francisco José Pérez-Llarena; Germán Bou

Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.


Journal of Antimicrobial Chemotherapy | 2010

A tripeptide deletion in the R2 loop of the class C β-lactamase enzyme FOX-4 impairs cefoxitin hydrolysis and slightly increases susceptibility to β-lactamase inhibitors

Susana Mallo; Francisco José Pérez-Llarena; Frédéric Kerff; Nelson C. Soares; Moreno Galleni; Germán Bou

OBJECTIVES A natural variant of the AmpC enzyme from Escherichia coli HKY28 with a tripeptide deletion (Gly-286/Ser-287/Asp-288) was recently described. The isolate produced an inhibitor-sensitive AmpC beta-lactamase variant that also conferred higher than usual levels of resistance to ceftazidime in the E. coli host. To demonstrate whether this is true in other class C beta-lactamase enzymes, we deleted the equivalent tripeptide in the FOX-4 plasmid-mediated class C beta-lactamase. METHODS By site-directed mutagenesis, we deleted the tripeptide Gly-306/Asn-307/Ser-308 of FOX-4, thus generating FOX-4(DeltaGNS). The enzymes (FOX-4 wild-type and DeltaGNS) were purified and kinetic parameters (kcat, Km, kcat/Km) as well as IC50 values of several beta-lactams were assessed. Modelling studies were also performed. RESULTS FOX-4(DeltaGNS) did not increase the catalytic efficiency towards ceftazidime, although it conferred a slight increase in the susceptibility to beta-lactamase inhibitors. There was also a noteworthy decrease in the cefoxitin MIC with the FOX-4(DeltaGNS) mutant (from 512 to 16 mg/L) as well as a 10-fold decrease in kcat/Km towards imipenem, which revealed specific structural features. CONCLUSIONS Although deletions in the R2-loop are able to extend the substrate spectrum of class C enzymes, the present results do not confirm this hypothesis in FOX-4. The FOX-4 R2 site would already be wide enough to accommodate antibiotic molecules, and thus any amino acid replacement or deletion at this location would not affect the hydrolytic efficiency towards beta-lactams and would have a less drastic effect on the susceptibility to beta-lactamase inhibitors.


Antimicrobial Agents and Chemotherapy | 2012

Characterization of a Novel IMP-28 Metallo-β-Lactamase from a Spanish Klebsiella oxytoca Clinical Isolate

Francisco José Pérez-Llarena; Ana Fernández; Laura Zamorano; Frédéric Kerff; Alejandro Beceiro; Belén Aracil; Emilia Cercenado; Elisenda Miró; Antonio Oliver; Jesús Oteo; Ferran Navarro; Germán Bou

ABSTRACT An isolate of Klebsiella oxytoca carrying a novel IMP metallo-β-lactamase was discovered in Madrid, Spain. The blaIMP-28 gene is part of a chromosomally located class I integron. The IMP-28 kcat/Km values for ampicillin, ceftazidime, and cefepime and, to a lesser extent, imipenem and meropenem, are clearly lower than those of IMP-1. The His306Gln mutation may induce important modifications of the L3 loop and thus of substrate accessibility and hydrolysis and be the main reason for this behavior.


Antimicrobial Agents and Chemotherapy | 2013

Characterization of the New AmpC β-Lactamase FOX-8 Reveals a Single Mutation, Phe313Leu, Located in the R2 Loop That Affects Ceftazidime Hydrolysis

Francisco José Pérez-Llarena; Frédéric Kerff; Laura Zamorano; María del Carmen Díaz Fernández; Maria Luz Nuñez; Elisenda Miró; Antonio Oliver; Ferran Navarro; Germán Bou

ABSTRACT A novel class C β-lactamase (FOX-8) was isolated from a clinical strain of Escherichia coli. The FOX-8 enzyme possessed a unique substitution (Phe313Leu) compared to FOX-3. Isogenic E. coli strains carrying FOX-8 showed an 8-fold reduction in resistance to ceftazidime relative to FOX-3. In a kinetic analysis, FOX-8 displayed a 33-fold reduction in kcat/Km for ceftazidime compared to FOX-3. In the FOX family of β-lactamases, the Phe313 residue located in the R2 loop affects ceftazidime hydrolysis and alters the phenotype of E. coli strains carrying this variant.


Antimicrobial Agents and Chemotherapy | 2014

Genetic and Kinetic Characterization of the Novel AmpC β-Lactamases DHA-6 and DHA-7

Francisco José Pérez-Llarena; Laura Zamorano; Frédéric Kerff; Alejandro Beceiro; Patricia García; Elisenda Miró; Nieves Larrosa; Frederic Gómez-Bertomeu; José Antonio Forteza Méndez; Juan José González-López; Antonio Oliver; Moreno Galleni; Ferran Navarro; Germán Bou

ABSTRACT During a Spanish surveillance study, two natural variants of DHA β-lactamases, DHA-6 and DHA-7, were found, with the replacements Ala226Thr and Phe322Ser, respectively, with respect to DHA-1. The DHA-6 and DHA-7 enzymes were isolated from Escherichia coli and Enterobacter cloacae clinical isolates, respectively. The aim of this study was to genetically, microbiologically, and biochemically characterize the DHA-6 and DHA-7 β-lactamases. The blaDHA-6 and blaDHA-7 genes were located in the I1 and HI2 incompatibility group plasmids of 87.3 and 310.4 kb, respectively. The genetic contexts of blaDHA-6 and blaDHA-7 were similar to that already described for the blaDHA-1 gene and included the qnrB4 and aadA genes. The MICs for cephalothin, aztreonam, cefotaxime, and ceftazidime were 8- to 32-fold lower for DHA-6 than for DHA-1 or DHA-7 expressed in the same isogenic E. coli TG1 strain. Interestingly, the MIC for cefoxitin was higher in the DHA-6-expressing transformant than in DHA-1 or DHA-7. Biochemical studies with pure β-lactamases revealed slightly lower catalytic efficiencies of DHA-6 against cephalothin, ceftazidime, and cefotaxime than those of DHA-1 and DHA-7. To understand this behavior, stability experiments were carried out and showed that the DHA-6 protein displayed significantly higher stability than the DHA-1 and DHA-7 enzymes. The proximity of Thr226 to the N terminus in the tertiary protein structure in DHA-6 may promote this stabilization and, consequently, may induce a slight reduction in the dynamic of this enzyme that primarily affects the hydrolysis of some of the bulkiest antibiotics.

Collaboration


Dive into the Francisco José Pérez-Llarena's collaboration.

Top Co-Authors

Avatar

Germán Bou

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Oliver

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Astrid Pérez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisenda Miró

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ferran Navarro

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Ana Patricia Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge