Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco M. Cánovas is active.

Publication


Featured researches published by Francisco M. Cánovas.


Planta | 1999

Expression of a conifer glutamine synthetase gene in transgenic poplar

Fernando Gallardo; Jianming Fu; Francisco R. Cantón; Angel García-Gutiérrez; Francisco M. Cánovas; Edward G. Kirby

Abstract. The assimilation of ammonium into organic nitrogen catalyzed by the enzyme glutamine synthetase (GS; EC 6.3.1.2) has been suggested to be the limiting step for plant nitrogen utilization (H-M. Lam et al. 1995, Plant Cell 7: 887–898). We have developed a molecular approach to increase glutamine production in transgenic poplar by the overexpression of a conifer GS gene. A chimeric construct consisting of the cauliflower mosaic virus 35S promoter fused to pine cytosolic GS cDNA and nopaline synthetase polyadenylation region was transferred into pBin19 for transformation of a hybrid poplar clone (INRA 7171-B4, Populus tremula × P. alba) via Agrobacterium tumefaciens. Transformed poplar lines were selected by their ability to grow on selective medium containing kanamycin. The presence of the introduced gene in the poplar genome was verified by Southern blotting and polymerase chain reaction analysis. Transgene expression was detected in all selected poplar lines at the mRNA level. The detection of the corresponding polypeptide (41 kDa) and increased GS activity in the transgenics suggest that pine transcripts are correctly processed by the angiosperm translational machinery and that GS1 subunits are assembled in functional holoenzymes. Expression of the pine GS1 gene in poplar was associated with an increase in the levels of total soluble protein and an increase in chlorophyll content in leaves of transformed trees. Furthermore, the mean net growth in height of GS-overexpressing clones was significantly greater than that of non-transformed controls, ranging from a 76% increase in height at 2 months to a 21.3% increase at 6 months. Our results suggest that the efficiency of nitrogen utilization may be engineered in trees by genetic manipulation of glutamine biosynthesis.


Planta | 1991

Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings

Francisco M. Cánovas; Francisco R. Cantón; Fernando Gallardo; Angel García-Gutiérrez; Antonio de Vicente

Seedlings of Pinus pinaster Alton accumulated chlorophyll (Chl) when grown in complete darkness. Contents of Chl a and Chl b increased during germination, reaching similar levels in light- and dark-grown plants. Glutamine-synthetase (GS; EC 6.3.1.2) activity was detected in the embryo and its level increased markedly in cotyledons of dark-germinated seedlings. Similar levels of GS activity were observed when the seeds were germinated in the presence of white light. Only one GS form, which eluted at about 0.1 M KCl, was found by ion-exchange chromatography. A predominant GS polypeptide of 43 kDa was detected in cotyledons, and its steady-state level increased with development in a lightindependent fashion. In roots and needles, a related GS polypeptide of 43 kDa was the unique species detectable by western blot analysis. Immunoblots of soluble proteins from isolated chloroplasts showed low abundance of GS protein, indicating that glutamine synthesis in pine cotyledons occurs mainly in the cytosol. Nitrogen-feeding experiments carried out with detached shoots indicated that neither NO3−nor NH4+regulate GS levels and the polypeptide pattern. Our results indicate that environmental factors, such as light and nitrogen supply, have a limited role in GS accumulation during pine development.


Plant Molecular Biology | 2012

Towards decoding the conifer giga-genome.

John MacKay; Jeffrey F. D. Dean; Christophe Plomion; Daniel G. Peterson; Francisco M. Cánovas; Nathalie Pavy; Pär K. Ingvarsson; Outi Savolainen; M. Ángeles Guevara; Silvia Fluch; Barbara Vinceti; Dolores Abarca; Carmen Díaz-Sala; María-Teresa Cervera

Several new initiatives have been launched recently to sequence conifer genomes including pines, spruces and Douglas-fir. Owing to the very large genome sizes ranging from 18 to 35 gigabases, sequencing even a single conifer genome had been considered unattainable until the recent throughput increases and cost reductions afforded by next generation sequencers. The purpose of this review is to describe the context for these new initiatives. A knowledge foundation has been acquired in several conifers of commercial and ecological interest through large-scale cDNA analyses, construction of genetic maps and gene mapping studies aiming to link phenotype and genotype. Exploratory sequencing in pines and spruces have pointed out some of the unique properties of these giga-genomes and suggested strategies that may be needed to extract value from their sequencing. The hope is that recent and pending developments in sequencing technology will contribute to rapidly filling the knowledge vacuum surrounding their structure, contents and evolution. Researchers are also making plans to use comparative analyses that will help to turn the data into a valuable resource for enhancing and protecting the world’s conifer forests.


Photosynthesis Research | 2005

Molecular aspects of nitrogen mobilization and recycling in trees

Francisco R. Cantón; Maria F. Suarez; Francisco M. Cánovas

Plants have developed a variety of molecular strategies to use limiting nutrients with a maximum efficiency. N assimilated into biomolecules can be released in the form of ammonium by plant metabolic activities in various physiological processes such as photorespiration, the biosynthesis of phenylpropanoids or the mobilization of stored reserves. Thus, efficient reassimilation mechanisms are required to reincorporate liberated ammonium into metabolism and maintain N plant economy. Although the biochemistry and molecular biology of ammonium recycling in annual herbaceous plants has been previously reported, the recent advances in woody plants need to be reviewed. Moreover, it is important to point out that N recycling is quantitatively massive during some of these metabolic processes in trees, including seed germination, the onset of dormancy and resumption of active growth or the biosynthesis of lignin that takes place during wood formation. Therefore, woody plants constitute an excellent system as a model to study N mobilization and recycling. The aim of this paper is to provide an overview of different physiological processes in woody perennials that challenge the overall plant N economy by releasing important amounts of inorganic N in the form of ammonium.


Planta | 1998

Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatment

Alejandro Pérez-García; S. Pereira; José Pissarra; A. García Gutiérrez; Francisco M. Cazorla; R. Salema; A. de Vicente; Francisco M. Cánovas

Abstract.In tomato (Lycopersicon esculentum Mill.) leaves, the predominant glutamine synthetase (GS; EC 6.3.1.2) is chloroplastic (GS2; 45 kDa) whereas the cytosolic isoform (GS1; 39 kDa) is represented as a minor enzyme. Following either infection by Pseudomonas syringae pv. tomato (Pst) or treatment with phosphinothricin (PPT), a GS inhibitor, GS1 accumulated in the leaves. In contrast to healthy control leaves, where GS1 was restricted to the veins, in infected and PPT-treated leaves the GS1 polypeptide was also detected in the leaf blade; moreover, it was more abundant than GS2. Different immunological approaches were therefore used to investigate whether or not the GS1 polypeptide expressed in Pst-infected and PPT-treated tomato leaves was distributed among different tissues and subcellular compartments in the same way as the constitutive GS1 expressed in healthy leaves. By tissue-printing analysis, a similar GS immunostaining was observed in epidermis, mesophyll and phloem of leaflet midrib cross-sections of control, infected and PPT-treated leaves. Immunocytochemical localization revealed that GS protein was present in the chloroplast of mesophyll cells and the cytoplasm of phloem cells in healthy leaves; however, in Pst-infected or PPT-treated leaves, a strong labelling was observed in the cytoplasm of mesophyll cells. Two-dimensional analysis of GS polypeptides showed that, in addition to the constitutive GS1, a GS1 polypeptide different in charge was present in tomato leaflets after microbial infection or herbicide treatment. All these results indicate that a novel cytosolic GS is induced in mesophyll cells of Pst-infected or PPT-treated leaves. A possible role for this new cytosolic GS in the remobilization of leaf nitrogen during infection is proposed.


Euphytica | 2000

DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.)

M. Gonzalo Claros; Remedios Crespillo; Marı́a L. Aguilar; Francisco M. Cánovas

Málaga is a province of Spain where olive-trees are cultivated in a large range of environments, climates and soils. We have developed a reliable and reproducible method to detect RAPD and AP-PCR polymorphisms, using DNA from olive-tree (Olea europaea L.) leaves. Starting from their natural orchards, fifty-six olive-tree cultivars throughout Málaga province, including oil and table olive cultivars, were screened and grouped into 22 varieties. A total of 62 informative polymorphic loci that provide 601 conspicuous bands were enough to differentiate the varieties. Clustering analyses managing 3 different pairwise distances, as well as phylogenetic analyses, led to the same result: olive-trees in Málaga can be divided into three main groups. Group I (90% of certainty) contains wild type and two introduced varieties, group II (83% of certainty) covers some native olive-trees, and group III (58% of certainty) is an heterogeneous cluster that includes varieties originating and cultivated in a number of Andalusian locations. Geographic location seems to be the first responsible of this classification, and morphological traits are needed to justify the group III subclustering. These results are consistent with the hypothesis of autochthonic origin of most olive-tree cultivars, and have been used to support a Label of Origin for the olive oil produced by the varieties included in group II.


Plant Journal | 2008

Differential regulation of two glutamine synthetase genes by a single Dof transcription factor

Marina Rueda-López; Remedios Crespillo; Francisco M. Cánovas; Concepción Ávila

The PpDof5 transcription factor from maritime pine (Pinus pinaster) is a regulator of the expression of glutamine synthetase (GS) genes in photosynthetic and non-photosynthetic tissues. PpDof5 mRNA is detected almost ubiquitously during pine development with low levels of gene expression in green tissues and much higher levels in roots and lignified shoots. The PpDof5 protein expressed in bacteria binds to oligonucleotide probes containing the AAAG core sequence derived from the promoters of GS1a and GS1b genes. Transient expression experiments in agroinfiltrated tobacco leaves and in pine protoplasts demonstrated that PpDof5 is able to trans-regulate differentially the transcription of both GS1a and GS1b. PpDof5 activated transcription of the GS1b promoter and, in contrast, behaved as a transcriptional repressor of the GS1a promoter. These results support a regulatory mechanism for the transcriptional control of the spatial distribution of cytosolic GS isoforms in pine. Considering the precise expression patterns of GS1 genes required to fulfil the ammonium assimilation requirements during tree development, we hypothesize that PpDof5 could have a key role in the control of ammonium assimilation for glutamine biosynthesis in conifers. A regulatory model of GS1 gene expression in pine is proposed.


Planta | 1995

Changes in NADP+-linked isocitrate dehydrogenase during tomato fruit ripening

Fernando Gallardo; Susana Gálvez; Pierre Gadal; Francisco M. Cánovas

The activity of NADP+-specific isocitrate dehydrogenase (NADP+-IDH, EC 1.1.1.42) was investigated during the ripening of tomato (Lycopersicon esculentum Mill.) fruit. In the breaker stage, NADP+-IDH activity declined but a substantial recovery was observed in the late ripening stages when most lycopene synthesis occurs. These changes resulted in higher NADP+-IDH activity and specific polypeptide abundance in ripe than in green fruit pericarp. Most of the enzyme corresponded to the predominant cytosolic isoform which was purified from both green and ripe fruits. Fruit NADP+-IDH seems to be a dimeric enzyme having a subunit size of 48 kDa. The Km values of the enzymes from green and ripe pericarp for NADP+, isocitrate and Mg2+ were not significantly different. The similar molecular and kinetic properties and chromatographic behaviour of the enzymes from the two kinds of tissue strongly suggest that the ripening process is not accompanied by a change in isoenzyme complement. The increase in NADP+-IDH in the late stage of ripening also suggests that this enzyme is involved in the metabolism of C6 organic acids and in glutamate accumulation in ripe tissues.


Planta | 2006

High levels of asparagine synthetase in hypocotyls of pine seedlings suggest a role of the enzyme in re-allocation of seed-stored nitrogen

Rafael A. Cañas; Fernando de la Torre; Francisco M. Cánovas; Francisco R. Cantón

A pine asparagine synthetase gene expressed in developing seedlings has been identified by cloning its cDNA (PsAS1) from Scots pine (Pinus sylvestris L.). Genomic DNA analysis with PsAS1 probes and a sequence-based phylogenetic tree are consistent with the possibility of more than one gene encoding asparagine synthetase in pine. However, the parallel patterns of free asparagine content and PsAS1 products indicate that the protein encoded by this gene is mainly responsible for the accumulation of this amino acid during germination and early seedling development. The temporal and spatial patterns of PsAS1 expression together with the spatial distribution of asparagine content suggest that, early after germination, part of the nitrogen mobilized from the megagametophyte is diverted toward the hypocotyl to produce high levels of asparagine as a reservoir of nitrogen to meet later specific demands of development. Furthermore, the transcript and protein analyses in seedlings germinated and growth for extended periods under continuous light or dark suggest that the spatial expression pattern of PsAS1 is largely determined by a developmental program. Therefore, our results suggest that the spatial and temporal control of PsAS1 expression determines the re-allocation of an important amount of seed-stored nitrogen during pine germination.


FEBS Letters | 1996

High-level expression of Pinus sylvestris glutamine synthetase in Escherichia coli: Production of polyclonal antibodies against the recombinant protein and expression studies in pine seedlings

Francisco R. Cantón; Angel García-Gutiérrez; Remedios Crespillo; Francisco M. Cánovas

In a previous work we reported the molecular characterization of a glutamine synthetase (GS; EC 6.3.1.2.) complementary DNA from a woody plant (Cantón et al. (1993) Plant Mol. Biol. 22, 819–828). The isolated cDNA (pGSP114) encoding a Scots pine (Pinus sylvestris) cytosolic subunit, has been subcloned into the expression vector pET3c to overproduce the GS polypeptide in Escherichia coli cells. The recombinant GS protein showed the same molecular size as a native Scots pine GS subunit. Antibodies against the pET3c‐GSP114 encoded protein were raised in rabbits by injecting purified preparations and specificity was determined by immunoprecipitation of GS activity present in pine crude extracts. In spite of the antibodies were able to recognize both cytosolic and chloroplastic GS in tomato plants, they were unable to immunodetect chloroplastic GS in green cotyledons of pine seedlings and cytosolic GS was the unique recognized polypeptide. Unlike to that found in other plant species, cytosolic GS was strongly expressed in green tissues as determined by protein and Northern analysis. Our results suggest a key role for cytosolic GS in photosynthetic tissues of conifers.

Collaboration


Dive into the Francisco M. Cánovas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge