Francisco R. Cantón
University of Málaga
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francisco R. Cantón.
Planta | 1999
Fernando Gallardo; Jianming Fu; Francisco R. Cantón; Angel García-Gutiérrez; Francisco M. Cánovas; Edward G. Kirby
Abstract. The assimilation of ammonium into organic nitrogen catalyzed by the enzyme glutamine synthetase (GS; EC 6.3.1.2) has been suggested to be the limiting step for plant nitrogen utilization (H-M. Lam et al. 1995, Plant Cell 7: 887–898). We have developed a molecular approach to increase glutamine production in transgenic poplar by the overexpression of a conifer GS gene. A chimeric construct consisting of the cauliflower mosaic virus 35S promoter fused to pine cytosolic GS cDNA and nopaline synthetase polyadenylation region was transferred into pBin19 for transformation of a hybrid poplar clone (INRA 7171-B4, Populus tremula × P. alba) via Agrobacterium tumefaciens. Transformed poplar lines were selected by their ability to grow on selective medium containing kanamycin. The presence of the introduced gene in the poplar genome was verified by Southern blotting and polymerase chain reaction analysis. Transgene expression was detected in all selected poplar lines at the mRNA level. The detection of the corresponding polypeptide (41 kDa) and increased GS activity in the transgenics suggest that pine transcripts are correctly processed by the angiosperm translational machinery and that GS1 subunits are assembled in functional holoenzymes. Expression of the pine GS1 gene in poplar was associated with an increase in the levels of total soluble protein and an increase in chlorophyll content in leaves of transformed trees. Furthermore, the mean net growth in height of GS-overexpressing clones was significantly greater than that of non-transformed controls, ranging from a 76% increase in height at 2 months to a 21.3% increase at 6 months. Our results suggest that the efficiency of nitrogen utilization may be engineered in trees by genetic manipulation of glutamine biosynthesis.
BMC Bioinformatics | 2010
Juan Falgueras; Antonio J. Lara; Noe Fernandez-Pozo; Francisco R. Cantón; Guillermo Pérez-Trabado; M. Gonzalo Claros
BackgroundHigh-throughput automated sequencing has enabled an exponential growth rate of sequencing data. This requires increasing sequence quality and reliability in order to avoid database contamination with artefactual sequences. The arrival of pyrosequencing enhances this problem and necessitates customisable pre-processing algorithms.ResultsSeqTrim has been implemented both as a Web and as a standalone command line application. Already-published and newly-designed algorithms have been included to identify sequence inserts, to remove low quality, vector, adaptor, low complexity and contaminant sequences, and to detect chimeric reads. The availability of several input and output formats allows its inclusion in sequence processing workflows. Due to its specific algorithms, SeqTrim outperforms other pre-processors implemented as Web services or standalone applications. It performs equally well with sequences from EST libraries, SSH libraries, genomic DNA libraries and pyrosequencing reads and does not lead to over-trimming.ConclusionsSeqTrim is an efficient pipeline designed for pre-processing of any type of sequence read, including next-generation sequencing. It is easily configurable and provides a friendly interface that allows users to know what happened with sequences at every pre-processing stage, and to verify pre-processing of an individual sequence if desired. The recommended pipeline reveals more information about each sequence than previously described pre-processors and can discard more sequencing or experimental artefacts.
Planta | 1991
Francisco M. Cánovas; Francisco R. Cantón; Fernando Gallardo; Angel García-Gutiérrez; Antonio de Vicente
Seedlings of Pinus pinaster Alton accumulated chlorophyll (Chl) when grown in complete darkness. Contents of Chl a and Chl b increased during germination, reaching similar levels in light- and dark-grown plants. Glutamine-synthetase (GS; EC 6.3.1.2) activity was detected in the embryo and its level increased markedly in cotyledons of dark-germinated seedlings. Similar levels of GS activity were observed when the seeds were germinated in the presence of white light. Only one GS form, which eluted at about 0.1 M KCl, was found by ion-exchange chromatography. A predominant GS polypeptide of 43 kDa was detected in cotyledons, and its steady-state level increased with development in a lightindependent fashion. In roots and needles, a related GS polypeptide of 43 kDa was the unique species detectable by western blot analysis. Immunoblots of soluble proteins from isolated chloroplasts showed low abundance of GS protein, indicating that glutamine synthesis in pine cotyledons occurs mainly in the cytosol. Nitrogen-feeding experiments carried out with detached shoots indicated that neither NO3−nor NH4+regulate GS levels and the polypeptide pattern. Our results indicate that environmental factors, such as light and nitrogen supply, have a limited role in GS accumulation during pine development.
Photosynthesis Research | 2005
Francisco R. Cantón; Maria F. Suarez; Francisco M. Cánovas
Plants have developed a variety of molecular strategies to use limiting nutrients with a maximum efficiency. N assimilated into biomolecules can be released in the form of ammonium by plant metabolic activities in various physiological processes such as photorespiration, the biosynthesis of phenylpropanoids or the mobilization of stored reserves. Thus, efficient reassimilation mechanisms are required to reincorporate liberated ammonium into metabolism and maintain N plant economy. Although the biochemistry and molecular biology of ammonium recycling in annual herbaceous plants has been previously reported, the recent advances in woody plants need to be reviewed. Moreover, it is important to point out that N recycling is quantitatively massive during some of these metabolic processes in trees, including seed germination, the onset of dormancy and resumption of active growth or the biosynthesis of lignin that takes place during wood formation. Therefore, woody plants constitute an excellent system as a model to study N mobilization and recycling. The aim of this paper is to provide an overview of different physiological processes in woody perennials that challenge the overall plant N economy by releasing important amounts of inorganic N in the form of ammonium.
Planta | 2006
Rafael A. Cañas; Fernando de la Torre; Francisco M. Cánovas; Francisco R. Cantón
A pine asparagine synthetase gene expressed in developing seedlings has been identified by cloning its cDNA (PsAS1) from Scots pine (Pinus sylvestris L.). Genomic DNA analysis with PsAS1 probes and a sequence-based phylogenetic tree are consistent with the possibility of more than one gene encoding asparagine synthetase in pine. However, the parallel patterns of free asparagine content and PsAS1 products indicate that the protein encoded by this gene is mainly responsible for the accumulation of this amino acid during germination and early seedling development. The temporal and spatial patterns of PsAS1 expression together with the spatial distribution of asparagine content suggest that, early after germination, part of the nitrogen mobilized from the megagametophyte is diverted toward the hypocotyl to produce high levels of asparagine as a reservoir of nitrogen to meet later specific demands of development. Furthermore, the transcript and protein analyses in seedlings germinated and growth for extended periods under continuous light or dark suggest that the spatial expression pattern of PsAS1 is largely determined by a developmental program. Therefore, our results suggest that the spatial and temporal control of PsAS1 expression determines the re-allocation of an important amount of seed-stored nitrogen during pine germination.
FEBS Letters | 1996
Francisco R. Cantón; Angel García-Gutiérrez; Remedios Crespillo; Francisco M. Cánovas
In a previous work we reported the molecular characterization of a glutamine synthetase (GS; EC 6.3.1.2.) complementary DNA from a woody plant (Cantón et al. (1993) Plant Mol. Biol. 22, 819–828). The isolated cDNA (pGSP114) encoding a Scots pine (Pinus sylvestris) cytosolic subunit, has been subcloned into the expression vector pET3c to overproduce the GS polypeptide in Escherichia coli cells. The recombinant GS protein showed the same molecular size as a native Scots pine GS subunit. Antibodies against the pET3c‐GSP114 encoded protein were raised in rabbits by injecting purified preparations and specificity was determined by immunoprecipitation of GS activity present in pine crude extracts. In spite of the antibodies were able to recognize both cytosolic and chloroplastic GS in tomato plants, they were unable to immunodetect chloroplastic GS in green cotyledons of pine seedlings and cytosolic GS was the unique recognized polypeptide. Unlike to that found in other plant species, cytosolic GS was strongly expressed in green tissues as determined by protein and Northern analysis. Our results suggest a key role for cytosolic GS in photosynthetic tissues of conifers.
Plant Molecular Biology | 1993
Francisco R. Cantón; Angel García-Gutiérrez; Fernando Gallardo; Antonio de Vicente; Francisco M. Cánovas
A full-length cDNA clone (pGSP114) encoding glutamine synthetase was isolated from a λgt11 library of the gymnosperm Pinus sylvestris. Nucleotide sequence analysis showed that pGSP114 contains an open reading frame encoding a protein of 357 amino acid residues with a calculated molecular mass of 39.5 kDa. The derived amino acid sequence was more homologous to cytosolic (GS1) (78–82%) than to chloroplastic (GS2) (71–75%) glutamine synthetase in angiosperms. The lack of N-terminal presequence and C-terminal extension which define the primary structure of GS2, also supports that the isolated cDNA encodes cytosolic GS. Southern blot analysis of genomic DNA from P. sylvestris and P. pinaster suggests that GS may be encoded by a small gene family in pine. GS mRNA was more abundant in cotyledons and stems than in roots of both Scots and maritime pines. Western blot analysis in P. sylvestris seedlings showed that only one GS polypeptide, similar in size to GS1 in P. pinaster, could be detected in several different tissues. Our results suggest that cytosolic GS is mainly responsible for glutamine biosynthesis in pine seedlings.
BMC Plant Biology | 2012
David P. Villalobos; Sara M. Díaz-Moreno; El-Sayed S Said; Rafael A. Cañas; Daniel Osuna; Sonia Van Kerckhoven; Rocío Bautista; Manuel G. Claros; Francisco M. Cánovas; Francisco R. Cantón
BackgroundTranscript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified.ResultsBy combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro.ConclusionsThe comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of different cell wall polymers associated with within-tree variations in pine wood structure and composition. In particular, we demonstrate the coordinated modulation at transcriptional level of a gene set involved in S-adenosylmethionine synthesis and ammonium assimilation with increased demand for coniferyl alcohol for lignin and lignan synthesis, enabling a better understanding of the metabolic requirements in cells undergoing lignification.
BMC Genomics | 2011
Noe Fernandez-Pozo; Javier Canales; Darío Guerrero-Fernández; David P. Villalobos; Sara M. Díaz-Moreno; Rocío Bautista; Arantxa Flores-Monterroso; M. Ángeles Guevara; Pedro Perdiguero; Carmen Collada; M. Teresa Cervera; Álvaro Soto; Ricardo J. Ordás; Francisco R. Cantón; Concepción Ávila; Francisco M. Cánovas; M. Gonzalo Claros
BackgroundPinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases.DescriptionEuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided.ConclusionsThe EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome.
Plant Molecular Biology | 1995
Angel García-Gutiérrez; Francisco R. Cantón; Fernando Gallardo; Francisca Sánchez-Jiménez; Francisco M. Cánovas
Pine seedlings are able to accumulate chlorophylls and develop green plastids in a light-independent manner. In this work, we have characterized ferredoxin-dependent glutamate synthase (EC 1.4.7.1; Fd-GOGAT), a key enzyme in nitrogen interconversion during this process. Fd-GOGAT has been purified about 170-fold from cotyledons of maritime pine (Pinus pinaster). As occurs in angiosperms, the native enzyme is a single polypeptide with an apparent molecular mass of 163–168 kDa that is confined to the chloroplast stroma. Polyclonal antibodies generated against the purified enzyme were used to immunoscreen a λgt11 expression library from Scots pine (Pinus sylvestris) seedlings and partial cDNA clones were isolated and characterized. The clone with the longest cDNA insert (pGOP44) contained the codification for the C-terminal (550 amino acids) of the pine Fd-GOGAT polypeptide. Immunological cross-reactivity and comparative amino sequence analysis revealed that Fd-GOGAT is a well conserved protein in higher plants. Western blot analyses showed that protein was expressed in chloroplast-containing pine tissues and this expression pattern was not affected by exogenously supplied nitrogen. Fd-GOGAT mRNA, polypeptide and enzyme activity accumulated in substantial amounts in dark-grown pine seedlings. The presence of a functional Fd-GOGAT may be important to provide the required glutamate for the biosynthesis of nitrogen compounds during chloroplast biogenesis in the dark.