Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Muñoz-Martínez is active.

Publication


Featured researches published by Francisco Muñoz-Martínez.


Cancer Research | 2005

Flavonoid Structure-Activity Studies Identify 6-Prenylchrysin and Tectochrysin as Potent and Specific Inhibitors of Breast Cancer Resistance Protein ABCG2

Abdelhakim Ahmed-Belkacem; Alexandre Pozza; Francisco Muñoz-Martínez; Susan E. Bates; Santiago Castanys; Francisco Gamarro; Attilio Di Pietro; José M. Pérez-Victoria

Overexpression of breast cancer resistance protein ABCG2 confers multidrug resistance in cancer cells. The GF120918-sensitive drug efflux activity of human wild-type (R482) ABCG2-transfected cells was used for rational screening of inhibitory flavonoids and establishment of structure-activity relationships. Flavones were found more efficient than flavonols, isoflavones, and flavanones. Differentially substituted flavone derivatives indicated positive OH effects at position 5, in contrast to positions 3 and 7. A methoxy at position 7 was slightly positive in tectochrysin, whereas a strong positive effect was produced by prenylation at position 6. The potency of 6-prenylchrysin was comparable with that of GF120918 (IC50 = 0.3 micromol/L). Both 6-prenylchrysin and tectochrysin seemed specific for ABCG2 because no interaction was detected with either P-glycoprotein or MRP1. The ABCG2 resistance profile in vitro is altered by mutation at amino acid 482. The R482T mutation limited the effect of prenylation on ABCG2 inhibition. Whereas GF120918 strongly inhibited the ATPase activity of wild-type ABCG2, neither 6-prenylchrysin nor tectochrysin altered the activity. In contrast, all three inhibitors stimulated the ATPase activity of mutant ABCG2. 6-Prenylchrysin at 0.5 micromol/L efficiently sensitized the growth of wild-type ABCG2-transfected cells to mitoxantrone, whereas higher concentrations were required for the mutant ones. In contrast, 1 micromol/L tectochrysin was sufficient to fully sensitize mutant ABCG2-transfected cells, whereas higher concentrations were required for the wild-type ones. Both flavones exhibited a lower intrinsic cytotoxicity than GF120918 and were apparently not transported by ABCG2. 6-Prenylchrysin and tectochrysin therefore constitute new and promising inhibitors for the reversal of ABCG2-mediated drug transport.


Environmental Microbiology | 2010

Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions.

Jesús Lacal; Cristina García-Fontana; Francisco Muñoz-Martínez; Juan-Luis Ramos; Tino Krell

Central to the different forms of taxis are methyl-accepting chemotaxis proteins (MCPs). The increasing number of genome sequences reveals that MCPs differ enormously in sequence, topology and genomic abundance. This work is a one-by-one bioinformatic analysis of the almost-totality of MCP genes available and a classification of motile bacteria according to their lifestyle. On average, motile archaea have 6.7 MCP genes per genome whereas motile bacteria have more than twice as much. We show that the number of MCPs per genome depends on bacterial lifestyle and metabolic diversity, but weakly on genome size. Signal perception at an MCP occurs at the N-terminal ligand binding region (LBR). Here we show that around 88% of MCPs possess an LBR that remains un-annotated in SMART. MCPs can be classified into two clusters according to the size of the LBR. Cluster I receptors have an LBR between 120 and 210 amino acids whereas cluster II receptors have larger LBRs of 220-299 amino acids. There is evidence that suggests that some cluster II LBRs are composed of two cluster I LBRs. Further evidence indicates that other cluster II LBRs might harbour novel sensor domains. Cluster II receptors are dominant in archaea whereas cluster I receptors are prevalent in bacteria. MCPs can be classified into six different receptor topologies and this work contains a first estimation of the relative abundance of different receptor topologies in bacteria and archaea. Topologies involving extracytoplasmic sensing are prevalent in bacteria whereas topologies with cytosolic signal recognition are abundant in archaea.


Environmental Microbiology | 2011

Diversity at its best: bacterial taxis

Tino Krell; Jesús Lacal; Francisco Muñoz-Martínez; José A. Reyes-Darias; Bilge Hilal Cadirci; Cristina García-Fontana; Juan L. Ramos

Bacterial taxis is one of the most investigated signal transduction mechanisms. Studies of taxis have primarily used Escherichia coli and Salmonella as model organism. However, more recent studies of other bacterial species revealed a significant diversity in the chemotaxis mechanisms which are reviewed here. Differences include the genomic abundance, size and topology of chemoreceptors, the mode of signal binding, the presence of additional cytoplasmic signal transduction proteins or the motor mechanism. This diversity of chemotactic mechanisms is partly due to the diverse nature of input signals. However, the physiological reasons for the majority of differences in the taxis systems are poorly understood and its elucidation represents a major research need.


Cancer Research | 2004

Celastraceae Sesquiterpenes as a New Class of Modulators That Bind Specifically to Human P-Glycoprotein and Reverse Cellular Multidrug Resistance

Francisco Muñoz-Martínez; Peihua Lu; Fernando Cortés-Selva; José M. Pérez-Victoria; Ignacio A. Jiménez; Angel G. Ravelo; Frances J. Sharom; Francisco Gamarro; Santiago Castanys

Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-β-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (Ki down to 0.24 ± 0.01 μmol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [3H]colchicine and tetramethylrosamine in plasma membrane from CHRB30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential applications in cancer chemotherapy because of their MDR reversal potency and specificity for P-glycoprotein.


Environmental Microbiology | 2011

Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas

Jesús Lacal; Francisco Muñoz-Martínez; José-Antonio Reyes-Darías; Estrella Duque; Miguel A. Matilla; Ana Segura; José-J. Ortega Calvo; Celia Jimenez-Sanchez; Tino Krell; Juan L. Ramos

Bacterial chemotaxis is an adaptive behaviour, which requires sophisticated information-processing capabilities that cause motile bacteria to either move towards or flee from chemicals. Pseudomonas putida DOT-T1E exhibits the capability to move towards different aromatic hydrocarbons present at a wide range of concentrations. The chemotactic response is mediated by the McpT chemoreceptor encoded by the pGRT1 megaplasmid. Two alleles of mcpT are borne on this plasmid and inactivation of either one led to loss of this chemotactic phenotype. Cloning of mcpT into a plasmid complemented not only the mcpT mutants but also its transfer to other Pseudomonas conferred chemotactic response to high concentrations of toluene and other chemicals. Therefore, the phenomenon of chemotaxis towards toxic compounds at high concentrations is gene-dose dependent. In vitro experiments show that McpT is methylated by CheR and McpT net methylation was diminished in the presence of hydrocarbons, what influences chemotactic movement towards these chemicals.


Antimicrobial Agents and Chemotherapy | 2006

Combination of Suboptimal Doses of Inhibitors Targeting Different Domains of LtrMDR1 Efficiently Overcomes Resistance of Leishmania spp. to Miltefosine by Inhibiting Drug Efflux

José M. Pérez-Victoria; Fernando Cortés-Selva; Adriana Parodi-Talice; Boris I. Bavchvarov; F. Javier Pérez-Victoria; Francisco Muñoz-Martínez; Mathias Maitrejean; M. Paola Costi; Denis Barron; Attilio Di Pietro; Santiago Castanys; Francisco Gamarro

ABSTRACT Miltefosine (hexadecylphosphocholine) is the first orally active drug approved for the treatment of leishmaniasis. We have previously shown the involvement of LtrMDR1, a P-glycoprotein-like transporter belonging to the ATP-binding cassette superfamily, in miltefosine resistance in Leishmania. Here we show that overexpression of LtrMDR1 increases miltefosine efflux, leading to a decrease in drug accumulation in the parasites. Although LtrMDR1 modulation might be an efficient way to overcome this resistance, a main drawback associated with the use of P-glycoprotein inhibitors is related to their intrinsic toxicity. In order to diminish possible side effects, we have combined suboptimal doses of modulators targeting both the cytosolic and transmembrane domains of LtrMDR1. Preliminary structure-activity relationships have allowed us to design a new and potent flavonoid derivative with high affinity for the cytosolic nucleotide-binding domains. As modulators directed to the transmembrane domains, we have selected one of the most potent dihydro-β-agarofuran sesquiterpenes described, and we have also studied the effects of two of the most promising, latest-developed modulators of human P-glycoprotein, zosuquidar (LY335979) and elacridar (GF120918). The results show that this combinatorial strategy efficiently overcomes P-glycoprotein-mediated parasite miltefosine resistance by increasing intracellular miltefosine accumulation without any side effect in the parental, sensitive, Leishmania line and in different mammalian cell lines.


Molecular Microbiology | 2013

Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA).

Miriam Rico-Jiménez; Francisco Muñoz-Martínez; Cristina García-Fontana; Matilde Fernández; Bertrand Morel; Álvaro Ortega; Juan L. Ramos; Tino Krell

The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l‐amino acids respectively. In addition, PctC‐LBR recognized GABA but not any other structurally related compound. l‐Gln, one of the three amino acids that is not recognized by PctA‐LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l‐Gln. Bacteria were efficiently attracted to l‐Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site‐directed mutagenesis studies showed that ligands bind to the membrane‐distal module. Analytical ultracentrifugation studies have shown that PctA‐LBR and PctB‐LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.


Current Pharmaceutical Design | 2005

Dihidro-β-Agarofuran Sesquiterpenes: A New Class of Reversal Agents of the Multidrug Resistance Phenotype Mediated by P-Glycoprotein in the Protozoan Parasite Leishmania

Fernando Cortés-Selva; Ignacio A. Jiménez; Francisco Muñoz-Martínez; Mercedes Campillo; Isabel L. Bazzocchi; Leonardo Pardo; Angel G. Ravelo; Santiago Castanys; Francisco Gamarro

Leishmaniasis is the most important emerging and uncontrolled infectious disease and the second cause of death among parasitic diseases, after Malaria. One of the main problems concerning the control of infectious diseases is the increased resistance to usual drugs. Overexpression of P-glycoprotein (Pgp)-like transporters represents a very efficient mechanism to reduce the intracellular accumulation of drugs in cancer cells and parasitic protozoans, thus conferring a multidrug resistance (MDR) phenotype. Pgps are active pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the activity of these proteins represents an interesting way to control drug resistance both in cancer and in infectious diseases. Most conventional mammalian Pgp-MDR modulators are ineffective in the modulation of Pgp activity in the protozoan parasite Leishmania. Consequently, there is a necessity to find effective modulators of Pgp-MDR for protozoan parasites. In this review we describe a rational strategy developed to find specific Pgp-MDR modulators in Leishmania, using natural and semisynthetic dihydro-beta-agarofuran sesquiterpenes from Celastraceae plants. A series of these compounds have been tested on a MDR Leishmania tropica line overexpressing a Pgp transporter to determine their ability to revert the resistance phenotype and to modulate intracellular drug accumulation. Almost all of these natural compounds showed potent reversal activity with different degrees of selectivity and a significant low toxicity. The three-dimensional quantitative structure-activity relationship using the comparative molecular similarity indices analysis (CoMSIA), was employed to characterize the requirements of these sesquiterpenes as modulators at Pgp-like transporter in Leishmania.


Organic and Biomolecular Chemistry | 2009

Novel dihydro-β-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance

David Torres-Romero; Francisco Muñoz-Martínez; Ignacio A. Jiménez; Santiago Castanys; Francisco Gamarro; Isabel L. Bazzocchi

P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed.


Journal of Biotechnology | 2012

Responses of Pseudomonas putida to toxic aromatic carbon sources

Tino Krell; Jesús Lacal; M. Eugenia Guazzaroni; Andreas Busch; Hortencia Silva-Jiménez; Sandy Fillet; José A. Reyes-Darias; Francisco Muñoz-Martínez; Miriam Rico-Jiménez; Cristina García-Fontana; Estrella Duque; Ana Segura; Juan-Luis Ramos

A number of bacteria can use toxic compounds as carbon sources and have developed complex regulatory networks to protect themselves from the toxic effects of these compounds as well as to benefit from their nutritious properties. As a model system we have studied the responses of Pseudomonas putida strains to toluene. Although this compound is highly toxic, several strains are able to use it for growth. Particular emphasis was given to the responses in the context of taxis, resistance and toluene catabolism. P. putida strains analysed showed chemotactic movements towards toluene. Strain DOT-T1E was characterised by an extreme form of chemotaxis, termed hyperchemotaxis, which is mediated by the McpT chemoreceptor encoded by plasmid pGRT1. Close McpT homologs are found in a number of other plasmids encoding degradation pathways of toxic compounds. The pGRT1 plasmid harbours also the genes for the TtgGHI efflux pump which was identified as the primary determinant for the resistance of strain DOT-T1E towards toluene. Pump expression is controlled by the TtgV repressor in response to a wide range of different mono- and biaromatic compounds. Strain DOT-T1E is able to degrade toluene, benzene and ethylbenzene via the toluene dioxygenase (TOD) pathway. The expression of the pathway operon is controlled by the TodS/T two component system. The sensor kinase TodS recognizes toluene with nanomolar affinity, which in turn triggers an increase in its autophosphorylation and consequently transcriptional activation. Data suggest that transcriptional activation of the TOD pathway occurs at very low toluene concentrations whereas TtgV mediated induction of pump expression sets in as the toluene concentration further increases.

Collaboration


Dive into the Francisco Muñoz-Martínez's collaboration.

Top Co-Authors

Avatar

Francisco Gamarro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Santiago Castanys

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Tino Krell

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina García-Fontana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Lacal

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan L. Ramos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernando Cortés-Selva

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José A. Reyes-Darias

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge