Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francisco Pinto is active.

Publication


Featured researches published by Francisco Pinto.


Functional Plant Biology | 2011

Non-invasive approaches for phenotyping of enhanced performance traits in bean

Uwe Rascher; Stephan Blossfeld; Fabio Fiorani; Siegfried Jahnke; Marcus Jansen; Arnd J. Kuhn; Shizue Matsubara; Lea L A Märtin; Andrew Merchant; Ralf Metzner; Mark Müller-Linow; Kerstin Nagel; Roland Pieruschka; Francisco Pinto; Christina Schreiber; Victoria Martine Temperton; Michael R. Thorpe; Dagmar van Dusschoten; Elizabeth Van Volkenburgh; Carel W. Windt; Ulrich Schurr

Plant phenotyping is an emerging discipline in plant biology. Quantitative measurements of functional and structural traits help to better understand gene-environment interactions and support breeding for improved resource use efficiency of important crops such as bean (Phaseolus vulgaris L.). Here we provide an overview of state-of-the-art phenotyping approaches addressing three aspects of resource use efficiency in plants: belowground roots, aboveground shoots and transport/allocation processes. We demonstrate the capacity of high-precision methods to measure plant function or structural traits non-invasively, stating examples wherever possible. Ideally, high-precision methods are complemented by fast and high-throughput technologies. High-throughput phenotyping can be applied in the laboratory using automated data acquisition, as well as in the field, where imaging spectroscopy opens a new path to understand plant function non-invasively. For example, we demonstrate how magnetic resonance imaging (MRI) can resolve root structure and separate root systems under resource competition, how automated fluorescence imaging (PAM fluorometry) in combination with automated shape detection allows for high-throughput screening of photosynthetic traits and how imaging spectrometers can be used to quantify pigment concentration, sun-induced fluorescence and potentially photosynthetic quantum yield. We propose that these phenotyping techniques, combined with mechanistic knowledge on plant structure-function relationships, will open new research directions in whole-plant ecophysiology and may assist breeding for varieties with enhanced resource use efficiency varieties.


Global Change Biology | 2015

Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant

Uwe Rascher; Luis Alonso; Andreas Burkart; C. Cilia; Sergio Cogliati; Roberto Colombo; Alexander Damm; Matthias Drusch; Luis Guanter; J. Hanus; T. Hyvärinen; T. Julitta; J. Jussila; K. Kataja; P. Kokkalis; S. Kraft; Thorsten Kraska; Maria Matveeva; J. Moreno; Onno Muller; M. Pikl; Francisco Pinto; L. Prey; Ralf Pude; Micol Rossini; Anke Schickling; Ulrich Schurr; D. Schüttemeyer; Jochem Verrelst; F. Zemek

Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.


Geophysical Research Letters | 2015

Red and far red Sun‐induced chlorophyll fluorescence as a measure of plant photosynthesis

Micol Rossini; L. Nedbal; Luis Guanter; A. Ač; Luis Alonso; Andreas Burkart; Sergio Cogliati; Roberto Colombo; Alexander Damm; Matthias Drusch; J. Hanus; R. Janoutova; T. Julitta; P. Kokkalis; J. Moreno; J. Novotny; Francisco Pinto; Anke Schickling; D. Schüttemeyer; F. Zemek; Uwe Rascher

Remote estimation of Sun-induced chlorophyll fluorescence emitted by terrestrial vegetation can provide an unparalleled opportunity to track spatiotemporal variations of photosynthetic efficiency. Here we provide the first direct experimental evidence that the two peaks of the chlorophyll fluorescence spectrum can be accurately mapped from high-resolution radiance spectra and that the signal is linked to variations in actual photosynthetic efficiency. Red and far red fluorescence measured using a novel airborne imaging spectrometer over a grass carpet treated with an herbicide known to inhibit photosynthesis was significantly higher than the corresponding signal from an equivalent untreated grass carpet. The reflectance signal of the two grass carpets was indistinguishable, confirming that the fast dynamic changes in fluorescence emission were related to variations in the functional status of actual photosynthesis induced by herbicide application. Our results from a controlled experiment at the local scale illustrate the potential for the global mapping of terrestrial photosynthesis through space-borne measurements of chlorophyll fluorescence.


Functional Plant Biology | 2012

Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis

Christoph Römer; Mirwaes Wahabzada; Agim Ballvora; Francisco Pinto; Micol Rossini; Jan Behmann; Jens Léon; Christian Thurau; Christian Bauckhage; Kristian Kersting; Uwe Rascher; Lutz Plümer

Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large, high dimensional data cubes posing a significant challenge to data analysis. Classical supervised learning algorithms often fail in applied plant sciences due to their need of labelled datasets, which are difficult to obtain. Therefore, new approaches for unsupervised learning of relevant patterns are needed. We apply for the first time a recent matrix factorisation technique, simplex volume maximisation (SiVM), to hyperspectral data. It is an unsupervised classification approach, optimised for fast computation of massive datasets. It allows calculation of how similar each spectrum is to observed typical spectra. This provides the means to express how likely it is that one plant is suffering from stress. The method was tested for drought stress, applied to potted barley plants in a controlled rain-out shelter experiment and to agricultural corn plots subjected to a two factorial field setup altering water and nutrient availability. Both experiments were conducted on the canopy level. SiVM was significantly better than using a combination of established vegetation indices. In the corn plots, SiVM clearly separated the different treatments, even though the effects on leaf and canopy traits were subtle.


Plant Cell and Environment | 2016

Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies

Francisco Pinto; Alexander Damm; Anke Schickling; Sergio Cogliati; Mark Müller-Linow; Agim Balvora; Uwe Rascher

Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopys photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy.


Genomics of plant genetic resources | 2014

Non-invasive Phenotyping Methodologies Enable the Accurate Characterization of Growth and Performance of Shoots and Roots

Marcus Jansen; Francisco Pinto; Kerstin Nagel; Dagmar van Dusschoten; Fabio Fiorani; Uwe Rascher; Heike U. Schneider; Achim Walter; Ulrich Schurr

Significant improvements of the resource-use efficiency of major crops are required to meet the growing demand of food and feed in the next decades in a sustainable way. Breeding for new varieties and modern crop management aims at obtaining higher and more stable yields by optimizing plant structure and function under different environmental conditions. The development and application of non-invasive methods to estimate plant parameters underlying heritable traits are key enabling components. To address this demand, recently an increasing number of imaging technologies have started to be applied in plant research to analyze various types of genotype collections. Some of these applications are mature and suitable to be scaled-up to higher throughput; others require validation beyond proof-of-concept. In this chapter firstly we present an overview of available methods while stressing the current limitations to be taken into account for correct interpretation of the results. Secondly, we focus on three different case studies by our lab demonstrating the applicability of multispectral, fluorescence, and magnetic resonance imaging for various research questions applicable to controlled environments and to the field. Taken together, these case studies highlight that a variety of non-invasive plant phenotyping methods are essential tools not only for functional genomics, but also for plant selection and breeding. In addition, these experiments underline the need of developing methods tailored to different plant species and at various cultivation systems and scales.


PLOS ONE | 2013

Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach.

Francisco Pinto; Michael Mielewczik; Frank Liebisch; Achim Walter; Hartmut Greven; Uwe Rascher

Background Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range. Methodology/Principal Findings We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum. Conclusion/Significance Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult.


Global Change Biology | 2018

Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest

Roberto Colombo; Marco Celesti; Remo Bianchi; Petya K. E. Campbell; Sergio Cogliati; Bruce D. Cook; Lawrence A. Corp; Alexander Damm; Jean-Christophe Domec; Luis Guanter; T. Julitta; Elizabeth M. Middleton; Asko Noormets; Francisco Pinto; Uwe Rascher; Micol Rossini; Anke Schickling

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.


workshop on hyperspectral image and signal processing evolution in remote sensing | 2014

Remote sensing of sun-induced chlorophyll fluorescence at different scales

Roberto Colombo; Luis Alonso; Marco Celesti; Sergio Cogliati; Alexander Damm; Matthias Drusch; Luis Guanter; T. Julitta; P. Kokkalis; S. Kraft; J. Moreno; Francisco Pinto; Uwe Rascher; Micol Rossini; Anke Schickling; D. Schüttemeyer; Wouter Verhoef; F. Zemek

In this contribution we present activities and selected results obtained in recent studies and campaigns conducted in the context of the FLuorescence EXplorer (FLEX) mission. FLEX is a candidate mission for the ESA 8th Earth Explorer and large efforts are currently dedicated to the development of an implementation scheme for an accurate mapping of fluorescence from the selected spaceborne sensor and mission configuration. Field and airborne data collected in different experimental campaigns, together with simulated data, have been used to demonstrate the feasibility of fluorescence retrievals and the potential of exploiting high spatial resolution fluorescence maps for a better understanding of the environment from space.


Remote Sensing of Environment | 2015

Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems

Sergio Cogliati; Micol Rossini; T. Julitta; Michele Meroni; Anke Schickling; Andreas Burkart; Francisco Pinto; Uwe Rascher; Roberto Colombo

Collaboration


Dive into the Francisco Pinto's collaboration.

Top Co-Authors

Avatar

Uwe Rascher

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Anke Schickling

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Micol Rossini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Sergio Cogliati

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Julitta

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Roberto Colombo

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Luis Guanter

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Luis Alonso

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

R Colombo

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge