Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francjan J. van Spronsen is active.

Publication


Featured researches published by Francjan J. van Spronsen.


The New England Journal of Medicine | 2014

Multiple phenotypes in phosphoglucomutase 1 deficiency

Laura C. Tegtmeyer; Stephan Rust; Monique van Scherpenzeel; Bobby G. Ng; Marie-Estelle Losfeld; Sharita Timal; Kimiyo Raymond; Ping He; Mie Ichikawa; Joris A. Veltman; Karin Huijben; Yoon S. Shin; Vandana Sharma; Maciej Adamowicz; Martin Lammens; Janine Reunert; Anika Witten; Esther Schrapers; Gert Matthijs; Jaak Jaeken; Daisy Rymen; Tanya Stojkovic; P. Laforêt; François Petit; Olivier Aumaître; Elżbieta Czarnowska; Monique Piraud; Teodor Podskarbi; Charles A. Stanley; Reuben Matalon

BACKGROUND Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Molecular Genetics and Metabolism | 2009

Optimizing the use of sapropterin (BH4) in the management of phenylketonuria

Nenad Blau; Amaya Bélanger-Quintana; M. Demirkol; François Feillet; Marcello Giovannini; Anita MacDonald; Friedrich K. Trefz; Francjan J. van Spronsen

Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase (PAH) gene, leading to deficient conversion of phenylalanine (Phe) to tyrosine and accumulation of toxic levels of Phe. A Phe-restricted diet is essential to reduce blood Phe levels and prevent long-term neurological impairment and other adverse sequelae. This diet is commenced within the first few weeks of life and current recommendations favor lifelong diet therapy. The observation of clinically significant reductions in blood Phe levels in a subset of patients with PKU following oral administration of 6R-tetrahydrobiopterin dihydrochloride (BH(4)), a cofactor of PAH, raises the prospect of oral pharmacotherapy for PKU. An orally active formulation of BH(4) (sapropterin dihydrochloride; Kuvan is now commercially available. Clinical studies suggest that treatment with sapropterin provides better Phe control and increases dietary Phe tolerance, allowing significant relaxation, or even discontinuation, of dietary Phe restriction. Firstly, patients who may respond to this treatment need to be identified. We propose an initial 48-h loading test, followed by a 1-4-week trial of sapropterin and subsequent adjustment of the sapropterin dosage and dietary Phe intake to optimize blood Phe control. Overall, sapropterin represents a major advance in the management of PKU.


Molecular Genetics and Metabolism | 2014

Phenylketonuria Scientific Review Conference: State of the science and future research needs

Kathryn M. Camp; Melissa A. Parisi; Phyllis B. Acosta; Gerard T. Berry; Deborah A. Bilder; Nenad Blau; Olaf A. Bodamer; Jeffrey P. Brosco; Christine Brown; Alberto Burlina; Barbara K. Burton; Christine Chang; Paul M. Coates; Amy Cunningham; Steven F. Dobrowolski; John H. Ferguson; Thomas D. Franklin; Dianne M. Frazier; Dorothy K. Grange; Carol L. Greene; Stephen C. Groft; Cary O. Harding; R. Rodney Howell; Kathleen Huntington; Henrietta D. Hyatt-Knorr; Indira Jevaji; Harvey L. Levy; Uta Lichter-Konecki; Mary Lou Lindegren; Michele A. Lloyd-Puryear

New developments in the treatment and management of phenylketonuria (PKU) as well as advances in molecular testing have emerged since the National Institutes of Health 2000 PKU Consensus Statement was released. An NIH State-of-the-Science Conference was convened in 2012 to address new findings, particularly the use of the medication sapropterin to treat some individuals with PKU, and to develop a research agenda. Prior to the 2012 conference, five working groups of experts and public members met over a 1-year period. The working groups addressed the following: long-term outcomes and management across the lifespan; PKU and pregnancy; diet control and management; pharmacologic interventions; and molecular testing, new technologies, and epidemiologic considerations. In a parallel and independent activity, an Evidence-based Practice Center supported by the Agency for Healthcare Research and Quality conducted a systematic review of adjuvant treatments for PKU; its conclusions were presented at the conference. The conference included the findings of the working groups, panel discussions from industry and international perspectives, and presentations on topics such as emerging treatments for PKU, transitioning to adult care, and the U.S. Food and Drug Administration regulatory perspective. Over 85 experts participated in the conference through information gathering and/or as presenters during the conference, and they reached several important conclusions. The most serious neurological impairments in PKU are preventable with current dietary treatment approaches. However, a variety of more subtle physical, cognitive, and behavioral consequences of even well-controlled PKU are now recognized. The best outcomes in maternal PKU occur when blood phenylalanine (Phe) concentrations are maintained between 120 and 360 μmol/L before and during pregnancy. The dietary management treatment goal for individuals with PKU is a blood Phe concentration between 120 and 360 μmol/L. The use of genotype information in the newborn period may yield valuable insights about the severity of the condition for infants diagnosed before maximal Phe levels are achieved. While emerging and established genotype-phenotype correlations may transform our understanding of PKU, establishing correlations with intellectual outcomes is more challenging. Regarding the use of sapropterin in PKU, there are significant gaps in predicting response to treatment; at least half of those with PKU will have either minimal or no response. A coordinated approach to PKU treatment improves long-term outcomes for those with PKU and facilitates the conduct of research to improve diagnosis and treatment. New drugs that are safe, efficacious, and impact a larger proportion of individuals with PKU are needed. However, it is imperative that treatment guidelines and the decision processes for determining access to treatments be tied to a solid evidence base with rigorous standards for robust and consistent data collection. The process that preceded the PKU State-of-the-Science Conference, the conference itself, and the identification of a research agenda have facilitated the development of clinical practice guidelines by professional organizations and serve as a model for other inborn errors of metabolism.


Human Molecular Genetics | 2012

Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing

Sharitakoemari Timal; Alexander Hoischen; Ludwig Lehle; Maciej Adamowicz; Karin Huijben; Jolanta Sykut-Cegielska; Justyna Paprocka; Ewa Jamroz; Francjan J. van Spronsen; Christian Körner; Christian Gilissen; Richard J. Rodenburg; Ilse Eidhof; Lambert van den Heuvel; Christian Thiel; Ron A. Wevers; Eva Morava; Joris A. Veltman; Dirk J. Lefeber

Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.


Molecular Genetics and Metabolism | 2010

Management of phenylketonuria in Europe: Survey results from 19 countries

Nenad Blau; Amaya Bélanger-Quintana; M. Demirkol; François Feillet; Marcello Giovannini; Anita MacDonald; Friedrich K. Trefz; Francjan J. van Spronsen

To gain better insight in the most current diagnosis and treatment practices for phenylketonuria (PKU) from a broad group of experts, a European PKU survey was performed. The questionnaire, consisting of 33 questions, was sent to 243 PKU professionals in 165 PKU centers in 23 European countries. The responses were compiled and descriptive analyses were performed. One hundred and one questionnaires were returned by 93/165 centers (56%) from 19/23 European countries (83%). The majority of respondents (77%) managed patients of all age groups and more than 90% of PKU teams included physicians or dieticians/nutritionists. The greatest variability existed especially in the definition of PKU phenotypes, therapeutic blood phenylalanine (Phe) target concentrations, and follow-up practices for PKU patients. The tetrahydrobiopterin (BH4; sapropterin) loading test was performed by 54% of respondents, of which 61% applied a single dose test (20mg/kg over 24h). BH4 was reported as a treatment option by 34%. This survey documents differences in diagnostic and treatment practices for PKU patients in European centers. In particular, recommendations for the treatment decision varied greatly between different European countries. There is an urgent need to pool long-term data in PKU registries in order to generate an evidence-based international guideline.


Journal of Pediatric Gastroenterology and Nutrition | 2005

Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifluoro-methylbenzoyl)-1,3-cyclohexanedione treatment

Francjan J. van Spronsen; Charles M. A. Bijleveld; Bianca T. van Maldegem; Frits A. Wijburg

Hereditary tyrosinemia type I (McKusick 27670) is an autosomal recessive inborn error of tyrosine catabolism caused by a deficiency of the enzyme fumarylacetoacetase that results in liver failure, hepatocellular carcinoma (HCC), renal tubular dysfunction and acute intermittent porphyria (1). Dietary treatment, once the cornerstone of treatment, results in a poor outcome and does not prevent the development of liver failure and HCC in all patients (2,3). Therefore, orthotopic liver transplantation was considered the only definitive answer to both the metabolic and the oncological problem (2–5). Perceptions of treatment changed completely in 1992, when Lindstedt et al. reported their first experiences with 2-(2 nitro-4–3 trifluoro-methylbenzoyl)-1,3cyclohexanedione (NTBC) (6), an inhibitor of the enzyme 4-hydroxy-phenylpyruvate dioxygenase (7). This enzyme is located upstream of fumarylacetoacetase in the catabolic pathway of tyrosine (Fig. 1), preventing the formation of maleylacetoacetate and fumarylacetoacetate and consequently, of succinylacetoacetate and succinylacetone also. Fumarylacetoacetate is the metabolite considered pathogenic and mutagenic in tyrosinemia type I (8,9). With NTBC, liver failure, renal tubular dysfunction and acute porphyria, tyrosinemia type I patients can be treated and prevented adequately (6,10–13). The development of HCC, however, is of concern. Development of HCC has been reported after relatively small periods of NTBC treatment, the longest period being 3 years (13–15). Dionisi-Vici et al. reported their experiences with one patient who developed HCC with lung metastases at 15 months of age while being on NTBC treatment during 10 months (14). As liver transplantation was not indicated because of the metastases, treatment included chemotherapy and partial hepatectomy. We present an additional patient with tyrosinemia type I who developed HHC without metastases despite NTBC treatment for 6 years, stressing the importance of ongoing strict follow-up for possible development of HCC.


Journal of Medical Genetics | 2012

A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene

Merel S. Ebberink; Janet Koster; Gepke Visser; Francjan J. van Spronsen; Irene Stolte-Dijkstra; G. Peter A. Smit; Johanna Fock; Hans R. Waterham

Background Peroxisomes are organelles that proliferate continuously and play an indispensable role in human metabolism. Consequently, peroxisomal gene defects can cause multiple, often severe disorders, including the peroxisome biogenesis disorders. Currently, 13 different PEX proteins have been implicated in various stages of peroxisome assembly and protein import. Defects in any of these proteins result in a peroxisome biogenesis disorder. The authors present here a novel genetic defect specifically affecting the division of peroxisomes. Methods The authors have studied biochemical and microscopical peroxisomal parameters in cultured patient fibroblasts, sequenced candidate PEX genes and determined the consequence of the identified PEX11β gene defect on peroxisome biogenesis in patient fibroblasts at different temperatures. Results The patient presented with congenital cataracts, mild intellectual disability, progressive hearing loss, sensory nerve involvement, gastrointestinal problems and recurrent migraine-like episodes. Although microscopical investigations of patient fibroblasts indicated a clear defect in peroxisome division, all biochemical parameters commonly used for diagnosing peroxisomal disorders were normal. After excluding mutations in all PEX genes previously implicated in peroxisome biogenesis disorders, it was found that the defect was caused by a homozygous non-sense mutation in the PEX11β gene. The peroxisome division defect was exacerbated when the patients fibroblasts were cultured at 40°C, which correlated with a marked decrease in the expression of PEX11γ. Conclusions This novel isolated defect in peroxisome division expands the clinical and genetic spectrum of peroxisomal disorders and indicates that peroxisomal defects exist, which cannot be diagnosed by standard laboratory investigations.


The Lancet Diabetes & Endocrinology | 2017

Key European guidelines for the diagnosis and management of patients with phenylketonuria

Francjan J. van Spronsen; Annemiek M. J. van Wegberg; K. Ahring; Amaya Bélanger-Quintana; Nenad Blau; Annet M. Bosch; Alberto Burlina; Jaime Campistol; François Feillet; Maria Gizewska; Stephan C. J. Huijbregts; Shauna Kearney; Vincenzo Leuzzi; F. Maillot; Ania C. Muntau; Fritz Trefz; Margreet van Rijn; John H. Walter; Anita MacDonald

We developed European guidelines to optimise phenylketonuria (PKU) care. To develop the guidelines, we did a literature search, critical appraisal, and evidence grading according to the Scottish Intercollegiate Guidelines Network method. We used the Delphi method when little or no evidence was available. From the 70 recommendations formulated, in this Review we describe ten that we deem as having the highest priority. Diet is the cornerstone of treatment, although some patients can benefit from tetrahydrobiopterin (BH4). Untreated blood phenylalanine concentrations determine management of people with PKU. No intervention is required if the blood phenylalanine concentration is less than 360 μmol/L. Treatment is recommended up to the age of 12 years if the phenylalanine blood concentration is between 360 μmol/L and 600 μmol/L, and lifelong treatment is recommended if the concentration is more than 600 μmol/L. For women trying to conceive and during pregnancy (maternal PKU), untreated phenylalanine blood concentrations of more than 360 μmol/L need to be reduced. Treatment target concentrations are as follows: 120-360 μmol/L for individuals aged 0-12 years and for maternal PKU, and 120-600 μmol/L for non-pregnant individuals older than 12 years. Minimum requirements for the management and follow-up of patients with PKU are scheduled according to age, adherence to treatment, and clinical status. Nutritional, clinical, and biochemical follow-up is necessary for all patients, regardless of therapy.


Molecular Genetics and Metabolism | 2009

Phenylketonuria: High plasma phenylalanine decreases cerebral protein synthesis

Marieke Hoeksma; Dirk-Jan Reijngoud; Jan Pruim; Harold W. de Valk; Anne M. J. Paans; Francjan J. van Spronsen

Left untreated, phenylketonuria biochemically results in high phenylalanine concentrations in blood and tissues, and clinically especially in severe mental retardation. Treatment consists of severe dietary restriction of phenylalanine with more or less normal intellectual outcome as result when started early enough. It is unclear whether treatment for life is necessary. A clear relationship between plasma phenylalanine concentrations and cerebral outcome exists, but the precise pathophysiological mechanism is not understood. In studies in mice with phenylketonuria, the cerebral protein synthesis rate is decreased when compared to controls. The aim of the present study was to determine the protein synthesis rate in relation to the plasma phenylalanine concentrations in-vivo in patients with phenylketonuria by positron emission tomography brain studies after an intravenous l-[1-(11)C]-tyrosine bolus. Results showed a significant negative relationship (R(2)=0.40, p<0.01) between plasma phenylalanine concentration and the cerebral protein synthesis rate in 19 patients with phenylketonuria. At increased plasma phenylalanine concentrations, i.e. above 600-800micromol/l, the cerebral protein synthesis rate is clearly decreased compared to lower phenylalanine concentrations. These data suggest that cerebral protein metabolism in untreated adults with phenylketonuria can be abnormal due to high plasma phenylalanine concentrations. Hence, we speculate that it is important to continue dietary treatment into adulthood, aiming at plasma phenylalanine concentrations <600-800micromol/l.


Blau, Nenad; van Spronsen, Francjan J (2014). Disorders of Phenylalanine and Tetrahydrobiopterin Metabolism. In: Blau, N; Duran, M; Gibson, K M; Dionisi-Vici, C. Physician's Guide to the Diagnosis, Treatment, and Follow-up of Inherited Metabolic Diseases. s.n.: Springer-Verlag, 3-21. | 2014

Disorders of Phenylalanine and Tetrahydrobiopterin Metabolism

Nenad Blau; Francjan J. van Spronsen

Hyperphenylalaninemia (HPA), a disorder of phenylalanine catabolism, is caused primarily by a deficiency of the hepatic phenylalanine-4-hydroxylase (PAH) or by one of the enzymes involved in its cofactor tetrahydrobiopterin (BH4) biosynthesis (GTP cyclohydrolase I (GTPCH) and 6-pyruvoyl-tetrahydropterin synthase (PTPS)) or regeneration (dihydropteridine reductase (DHPR) and pterin carbinolamine-4a-dehydratase (PCD)) (Blau et al. 2001). BH4 is known to be the natural cofactor for PAH, all three isoforms of nitric oxide synthase (NOS), tyrosine-3-hydroxylase, as well as tryptophan-5-hydroxylase (Werner et al. 2011), the latter two being the key enzymes in the biosynthesis of the neurotransmitters dopamine and serotonin. Thus, with two exceptions (see below) any cofactor defect will result in a deficiency of biogenic amines accompanied by HPA. Because phenylalanine is a competitive inhibitor of the uptake of tyrosine and tryptophan and other LNAA across the blood-brain barrier and of the hydroxylases of tyrosine and tryptophan, depletion of catecholamines and serotonin occurs in untreated patients with PAH deficiency. Both groups of HPA (PAH and BH4 deficiency) are heterogeneous disorders varying from severe to mild and benign forms. Because of the different clinical and biochemical severities in this group of diseases, the terms “severe” or “mild” will be used based upon the type of treatment and involvement of the CNS. For the BH4 defects, symptoms may manifest during the first weeks of life, but usually are noted within the first 6 months of life. Birth is generally uneventful, except for an increased incidence of prematurity and lower birth weights in severe PTPS deficiency (Opladen et al. 2012).

Collaboration


Dive into the Francjan J. van Spronsen's collaboration.

Top Co-Authors

Avatar

Margreet van Rijn

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Terry G. J. Derks

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Nenad Blau

Riverside City College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Rebecca Heiner-Fokkema

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Danique van Vliet

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dirk-Jan Reijngoud

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge