Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Rebecca Heiner-Fokkema is active.

Publication


Featured researches published by M. Rebecca Heiner-Fokkema.


Heart Failure Reviews | 2012

Advanced glycation end-products, a pathophysiological pathway in the cardiorenal syndrome

Suzan Willemsen; J. W. L. Hartog; M. Rebecca Heiner-Fokkema; Dirk J. van Veldhuisen; Adriaan A. Voors

The prevalence of heart failure (HF) is increasing. A distinction is made between diastolic HF (preserved left ventricular ejection fraction (LVEF)) and systolic HF (reduced LVEF). Advanced glycation end-products (AGEs) are crystallized proteins that accumulate during ageing, but are particularly increased in patients with diabetes mellitus and in patients with renal failure. Through the formation of collagen crosslinks, and by interaction with the AGE-receptor, which impairs calcium handling and increases fibrosis, AGE-accumulation has pathophysiologically been associated with the development of diastolic and renal dysfunction. Interestingly, diastolic dysfunction is a frequent finding in elderly patients, diabetic patients and in patients with renal failure. Taken together, this suggests that AGEs are related to the development and progression of diastolic HF and renal failure. In this review, the role of AGEs as a possible pathophysiological factor that link the development and progression of heart and renal failure, is discussed. Finally, the role of AGE intervention as a possible treatment in HF patients will be discussed.


PLOS ONE | 2015

Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice

Danique van Vliet; Vibeke M. Bruinenberg; Priscila Nicolao Mazzola; Martijn van Faassen; Pim de Blaauw; Ido P. Kema; M. Rebecca Heiner-Fokkema; Rogier D. van Anholt; Eddy A. Van der Zee; Francjan J. van Spronsen

Background Phenylketonuria (PKU) was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA) is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning. Objective As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations) in PKU mice. Methods C57Bl/6 Pah-enu2 (PKU) mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed. Results In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal chow (p<0.01), while alleviating brain deficiencies of some but not all supplemented LNAA. Moreover, LNAA supplementation in PKU mice significantly increased brain serotonin and norepinephrine concentrations from 35% to 71% and from 57% to 86% of wild-type concentrations (p<0.01), respectively, but not brain dopamine concentrations (p = 0.307). Conclusions This study shows that LNAA supplementation without dietary phenylalanine restriction in PKU mice improves brain biochemistry through all three hypothesized biochemical mechanisms. Thereby, these data provide proof-of-concept for LNAA supplementation as a valuable alternative dietary treatment strategy in PKU. Based on these results, LNAA treatment should be further optimized for clinical application with regard to the composition and dose of the LNAA supplement, taking into account all three working mechanisms of LNAA treatment.


Molecular Genetics and Metabolism | 2015

BH4 treatment in BH4-responsive PKU patients: preliminary data on blood prolactin concentrations suggest increased cerebral dopamine concentrations.

Danique van Vliet; Karen Anjema; Rianne Jahja; Martijn J. de Groot; Geertje B. Liemburg; M. Rebecca Heiner-Fokkema; Eddy A. Van der Zee; Terry G. J. Derks; Ido P. Kema; Francjan J. van Spronsen

In phenylketonuria (PKU), cerebral neurotransmitter deficiencies have been suggested to contribute to brain dysfunction. Present treatment aims to reduce blood phenylalanine concentrations by a phenylalanine-restricted diet, while in some patients blood phenylalanine concentrations also respond to cofactor treatment with tetrahydrobiopterin (BH4). Recently, a repurposing approach of BH4 was suggested to increase cerebral neurotransmitter synthesis. To investigate whether BH4 may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, we investigated blood prolactin concentrations-as a parameter of brain dopamine availability. We retrospectively compared blood prolactin in relation to blood phenylalanine concentrations of nine (male) BH4-responsive PKU patients, when being treated without and with BH4. Blood prolactin concentrations positively correlated to blood phenylalanine concentrations (p=0.002), being significantly lower with than without BH4 treatment (p=0.047). In addition, even in this small number of male patients, blood prolactin concentrations tended to be lower at increasing BH4 dose (p=0.054), while taking blood phenylalanine concentrations into account (p=0.002). In individual BH4-responsive patients, median blood prolactin concentrations were significantly lower while using BH4 than before using BH4 treatment (p=0.024), whereas median blood phenylalanine concentrations tended to be lower, but this did not reach statistical significance (p=0.107). Therefore, these data show that high blood phenylalanine in BH4-responsive PKU male patients seems to be associated with increased blood prolactin concentrations, suggesting reduced cerebral dopamine availability. Moreover, these data suggest that BH4 treatment in itself could decrease blood prolactin concentrations in a dose-responsive way, independent of blood phenylalanine concentrations. We conclude that these preliminary data indicate that BH4 treatment may improve cerebral dopamine concentrations in PKU patients beyond its effect through lowering blood phenylalanine concentrations, possibly in a dose-dependent manner, but further research would be warranted.


Orphanet Journal of Rare Diseases | 2014

Single amino acid supplementation in aminoacidopathies: a systematic review

Danique van Vliet; Terry G. J. Derks; Margreet van Rijn; Martijn J. de Groot; Anita MacDonald; M. Rebecca Heiner-Fokkema; Francjan J. van Spronsen

Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with protein substitution with all amino acids except the amino acids prior to the metabolic block and enriched with the amino acid that has become essential by the enzymatic defect. For some aminoacidopathies, supplementation of one or two amino acids, that have not become essential by the enzymatic defect, has been suggested. This so-called single amino acid supplementation can serve different treatment objectives, but evidence is limited. The aim of the present article is to provide a systematic review on the reasons for applications of single amino acid supplementation in aminoacidopathies treated with natural protein restriction and synthetic amino acid mixtures.


Frontiers in Behavioral Neuroscience | 2016

The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background.

Vibeke M. Bruinenberg; Els van der Goot; Danique van Vliet; Martijn J. de Groot; Priscila Nicolao Mazzola; M. Rebecca Heiner-Fokkema; Martijn van Faassen; Francjan J. van Spronsen; Eddy A. Van der Zee

To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU), an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background) is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter-levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely (1) activity levels, (2) motor performance, (3) anxiety and/or depression-like behavior, and (4) learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the PAH mutation is influenced by other factors than Phe levels alone. Therefore, future research should consider these differences when choosing one of the genetic strains to investigate the pathophysiological mechanism underlying PKU-related behavior, especially when combined with new treatment strategies.


Pediatrics | 2014

Favorable Outcome After Physiologic Dose of Sodium-d,l-3-Hydroxybutyrate in Severe MADD

Willemijn J. van Rijt; M. Rebecca Heiner-Fokkema; Gideon J. du Marchie Sarvaas; Hans R. Waterham; Robert G. T. Blokpoel; Francjan J. van Spronsen; Terry G. J. Derks

Multiple acyl coenzyme A dehydrogenase deficiency (MADD) is a severe inborn error of metabolism. Experiences with sodium-d,l-3-hydroxybutyrate (3-HB) treatment are limited although positive; however, the general view on outcome of severely affected patients with MADD is relatively pessimistic. Here we present an infant with MADD in whom the previously reported dose of 3-HB did not prevent the acute, severe, metabolic decompensation or progressive cardiomyopathy in the subsequent months. Only after a physiologic dose of 2600 mg/kg of 3-HB per day were ketone bodies detected in blood associated with improvement of the clinical course, N-terminal prohormone of brain natriuretic peptide and echocardiographic parameters. Long-term studies are warranted on 3-HB treatment in patients with MADD.


Surgery for Obesity and Related Diseases | 2018

Satiety and gastrointestinal hormones during a Mixed Meal Tolerance Test after gastric bypass surgery: association with plasma amino acid concentrations,

Merel van den Broek; Loek J.M. de Heide; Marloes Emous; Ragnhild Wijma; Nic J. G. M. Veeger; Albert Wolthuis; Anke Laskewitz; M. Rebecca Heiner-Fokkema; Anneke C. Muller Kobold; Bruce H. R. Wolffenbuttel; André P. van Beek

BACKGROUND Circulating amino acids have been associated with both appetite and the secretion of anorexigenic hormones in healthy and obese populations. This effect has not been investigated in subjects having undergone Roux-en-Y gastric bypass surgery (RYGB). OBJECTIVE To investigate the association between postprandial plasma concentrations of amino acids and the anorexigenic hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY), the orexigenic hormone ghrelin, and satiety and hunger in post-RYGB subjects. SETTING A Dutch surgical department. METHODS Participants after primary RYGB were studied during a Mixed Meal Tolerance Test (MMTT). Satiety and hunger were assessed every 30 minutes on visual analogue scales. Blood samples were collected at baseline, every 10 minutes during the first half hour and every 30 minutes until 210 minutes after the start. The samples were assessed for 24 amino acids and 3 gastrointestinal hormones. Incremental areas under the curve (iAUCs) were calculated. Exploratory analyses were performed in which subjects were divided into high and low responders depending on the median iAUC. RESULTS 42 subjects, aged 48 ± 11 (mean ± SD) years, 31 to 76 months post-RYGB and with total weight loss of 30 ± 9% completed the MMTT. Subjects with high satiety scores had more than a 25% higher net iAUC of PYY and GLP-1 and at least a 10% higher net iAUC of 10 amino acids compared to subjects with low scores (P < 0.05). The net iAUC of five of these amino acids (i.e. arginine, asparagine, histidine, serine and threonine) was more than 10% higher in subjects with high responses on GLP-1 and/or PYY (P < 0.05). CONCLUSIONS Certain postprandial amino acids were associated with satiety and anorexigenic hormones and could therefore play a role in appetite regulation after RYGB; either by a direct effect on satiety, indirectly through gastrointestinal hormones, or both.


Journal of Nutritional Biochemistry | 2018

Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria : evidence from adult Pah-enu2 mice

Danique van Vliet; Els van der Goot; Vibeke M. Bruinenberg; Martijn van Faassen; Pim de Blaauw; Ido P. Kema; M. Rebecca Heiner-Fokkema; Eddy A. Van der Zee; Francjan J. van Spronsen

Phenylketonuria treatment mainly consists of a phenylalanine-restricted diet but still results in suboptimal neuropsychological outcome, which is at least partly based on cerebral monoamine deficiencies, while, after childhood, treatment compliance decreases. Supplementation of large neutral amino acids (LNAAs) was previously demonstrated in young phenylketonuria mice to target all three biochemical disturbances underlying brain dysfunction in phenylketonuria. However, both its potential in adult phenylketonuria and the comparison with the phenylalanine-restricted diet remain to be established. To this purpose, several LNAA supplements were compared with a severe phenylalanine-restricted diet with respect to brain monoamine and amino acid concentrations in adult C57Bl/6 Pah-enu2 mice. Adult phenylketonuria mice received a phenylalanine-restricted diet, unrestricted diet supplemented with several combinations of LNAAs or AIN-93M control diet for 6 weeks. In addition, adult wild-type mice on AIN-93M diet served as controls. The severe phenylalanine-restricted diet in adult phenylketonuria mice significantly reduced plasma and brain phenylalanine and restored brain monoamine concentrations, while brain concentrations of most nonphenylalanine LNAAs remained subnormal. Supplementation of eight LNAAs was similarly effective as the severe phenylalanine-restricted diet to restore brain monoamines, while brain and plasma phenylalanine concentrations remained markedly elevated. These results provide biochemical support for the effectiveness of the severe phenylalanine-restricted diet and showed the possibilities of LNAA supplementation being equally effective to restore brain monoamines in adult phenylketonuria mice. Therefore, LNAA supplementation is a promising alternative treatment to phenylalanine restriction in adult phenylketonuria patients to further optimize neuropsychological functioning.


Analytical and Bioanalytical Chemistry | 2018

One- vs two-phase extraction: re-evaluation of sample preparation procedures for untargeted lipidomics in plasma samples

Andres Gil; Wenxuan Zhang; Justina C. Wolters; Hjalmar P. Permentier; Theo Boer; Peter Horvatovich; M. Rebecca Heiner-Fokkema; Dirk-Jan Reijngoud; Rainer Bischoff

Lipidomics is a rapidly developing field in modern biomedical research. While LC-MS systems are able to detect most of the known lipid classes in a biological matrix, there is no single technique able to extract all of them simultaneously. In comparison with two-phase extractions, one-phase extraction systems are of particular interest, since they decrease the complexity of the experimental procedure. By using an untargeted lipidomics approach, we explored the differences/similarities between the most commonly used two-phase extraction systems (Folch, Bligh and Dyer, and MTBE) and one of the more recently introduced one-phase extraction systems for lipid analysis based on the MMC solvent mixture (MeOH/MTBE/CHCl3). The four extraction methods were evaluated and thoroughly compared against a pooled extract that qualitatively and quantitatively represents the average of the combined extractions. Our results show that the lipid profile obtained with the MMC system displayed the highest similarity to the pooled extract, indicating that it was most representative of the lipidome in the original sample. Furthermore, it showed better extraction efficiencies for moderate and highly apolar lipid species in comparison with the Folch, Bligh and Dyer, and MTBE extraction systems. Finally, the technical simplicity of the MMC procedure makes this solvent system highly suitable for automated, untargeted lipidomics analysis.


PLOS ONE | 2017

Presumptive brain influx of large neutral amino acids and the effect of phenylalanine supplementation in patients with Tyrosinemia type 1

Willem G. van Ginkel; Danique van Vliet; Johannes Burgerhof; Pim de Blaauw; M. Estela Rubio Gozalbo; M. Rebecca Heiner-Fokkema; Francjan J. van Spronsen

Introduction Hereditary Tyrosinemia type 1 (HT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Current treatment consists of 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and a tyrosine and phenylalanine restricted diet. Recently, neuropsychological deficits have been seen in HT1 patients. These deficits are possibly associated with low blood phenylalanine concentrations and/or high blood tyrosine concentrations. Therefore, the aim of the present study was threefold. Firstly, we aimed to calculate how the plasma amino acid profile in HT1 patients may influence the presumptive brain influx of all large neutral amino acids (LNAA). Secondly, we aimed to investigate the effect of phenylalanine supplementation on presumptive brain phenylalanine and tyrosine influx. Thirdly, we aimed to theoretically determine minimal target plasma phenylalanine concentrations in HT1 patient to ensure adequate presumptive brain phenylalanine influx. Methods Data of plasma LNAA concentrations were obtained. In total, 239 samples of 9 HT1 children, treated with NTBC, diet, and partly with phenylalanine supplementation were collected together with 596 samples of independent control children. Presumptive brain influx of all LNAA was calculated, using Michaelis-Menten parameters (Km) and Vmax-values obtained from earlier articles. Results In HT1 patients, plasma concentrations and presumptive brain influx of tyrosine were higher. However, plasma and especially brain influx of phenylalanine were lower in HT1 patients. Phenylalanine supplementation did not only tend to increase plasma phenylalanine concentrations, but also presumptive brain phenylalanine influx, despite increased plasma tyrosine concentrations. However, to ensure sufficient brain phenylalanine influx in HT1 patients, minimal plasma phenylalanine concentrations may need to be higher than considered thus far. Conclusion This study clearly suggests a role for disturbed brain LNAA biochemistry, which is not well reflected by plasma LNAA concentrations. This could play a role in the pathophysiology of the neuropsychological impairments in HT1 patients and may have therapeutic implications.

Collaboration


Dive into the M. Rebecca Heiner-Fokkema's collaboration.

Top Co-Authors

Avatar

Francjan J. van Spronsen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Danique van Vliet

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Terry G. J. Derks

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pim de Blaauw

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ido P. Kema

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Margreet van Rijn

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Martijn van Faassen

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esther van Dam

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge