Franck Bocquet
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franck Bocquet.
Physical Review B | 2008
Franck Bocquet; Laurent Nony; Christian Loppacher; Thilo Glatzel
An analytical model of the electrostatic force between the tip of a non-contact Atomic Force Microscope (nc-AFM) and the (001) surface of an ionic crystal is reported. The model is able to account for the atomic contrast of the local contact potential difference (CPD) observed while nc-AFM-based Kelvin Probe Force Microscopy (KPFM) experiments. With the goal in mind to put in evidence this short-range electrostatic force, the Madelung potential arising at the surface of the ionic crystal is primarily derived. The expression of the force which is deduced can be split into two major contributions: the first stands for the coupling between the microscopic structure of the tip apex and the capacitor formed between the tip, the ionic crystal and the counter-electrode; the second term depicts the influence of the Madelung surface potential on the mesoscopic part of the tip, independently from its microscopic structure. These short-range electrostatic forces are in the range of ten pico-Newtons. When explicitly considering the crystal polarization, an analytical expression of the bias voltage to be applied on the tip to compensate for the local CPD, i.e. to cancel the short-range electrostatic force, is derived. The compensated CPD has the lateral periodicity of the Madelung surface potential. However, the strong dependence on the tip geometry, the applied modulation voltage as well as the tip-sample distance, which can even lead to an overestimation of the real surface potential, makes quantitative KPFM measurements of the local CPD extremely difficult.
Physical Review Letters | 2009
Laurent Nony; Adam S. Foster; Franck Bocquet; Christian Loppacher
A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local contact potential difference does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations.
Beilstein Journal of Nanotechnology | 2012
Laurent Nony; Franck Bocquet; Franck Para; Frédéric Chérioux; Eric Duverger; Frank Palmino; Vincent Luzet; Christian Loppacher
Summary We investigated the adsorption of 4-methoxy-4′-(3-sulfonatopropyl)stilbazolium (MSPS) on different ionic (001) crystal surfaces by means of noncontact atomic force microscopy. MSPS is a zwitterionic molecule with a strong electric dipole moment. When deposited onto the substrates at room temperature, MSPS diffuses to step edges and defect sites and forms disordered assemblies of molecules. Subsequent annealing induces two different processes: First, at high coverage, the molecules assemble into a well-organized quadratic lattice, which is perfectly aligned with the <110> directions of the substrate surface (i.e., rows of equal charges) and which produces a Moiré pattern due to coincidences with the substrate lattice constant. Second, at low coverage, we observe step edges decorated with MSPS molecules that run along the <110> direction. These polar steps most probably minimize the surface energy as they counterbalance the molecular dipole by presenting oppositely charged ions on the rearranged step edge.
Nature Chemistry | 2018
Franck Para; Franck Bocquet; Laurent Nony; Christian Loppacher; Michel Féron; Frédéric Chérioux; David Z. Gao; Filippo Federici Canova; Matthew Watkins
On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface. Polymer fibres up to 1 μm long are formed through chain-like rather than step-like growth. Interactions between potassium cations and the dimaleimide’s oxygen atoms facilitate the propagation of the polymer fibres along a preferred axis of the substrate over long distances. Density functional theory calculations, non-contact atomic force microscopy imaging and manipulations at room temperature were used to explore the initiation and propagation processes, as well as the structure and stability of the resulting one-dimensional polymer fibres.On-surface polymerization is a promising technique to prepare organic functional nanomaterials, but it has remained difficult to carry out on insulating surfaces. Now, the photoinitiated radical polymerization of dimaleimide on KCl, initiated from a two-dimensional gas phase and guided by molecule–substrate interactions, has led to polymer fibres up to 1 μm long.
Archive | 2012
Laurent Nony; Franck Bocquet; Adam S. Foster; Christian Loppacher
The goal of this chapter is to gather and detail recent numericaldevelopments addressing the issue of atomic-scale measurements in Kelvin Probe Force Microscopy (KPFM). It is argued why the problem requires the combination between the atomistic description of the distance- and bias voltage-dependent force field occurring between the tip and the surface, as well as an accurate numerical implementation of the complex noncontact atomic force microscopy and KPFM setup. When combining these tools, it is possible to draw conclusions regarding the origin of the atomic-scale KPFM contrast and its connections with usual physical observables such as the surface potential and the local work function. These aspects are discussed with respect to the surface of a bulk ionic crystal.
Journal of Physical Chemistry C | 2010
Rémy Pawlak; Laurent Nony; Franck Bocquet; Vincent Oison; Michel Sassi; Jean-Marc Debierre; Christian Loppacher; Louis Porte
Physical Review Letters | 2012
Franck Bocquet; Laurent Nony; Stefan C. B. Mannsfeld; Vincent Oison; Rémy Pawlak; Louis Porte; Christian Loppacher
Nanotechnology | 2009
Laurent Nony; Franck Bocquet; Christian Loppacher; Thilo Glatzel
Physical Review B | 2005
Franck Bocquet; Christian Maurel; Jean-Marc Roussel; Mathieu Abel; Mathieu Koudia; Louis Porte
Physical Review B | 2011
Franck Bocquet; Laurent Nony; Christian Loppacher