Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franck Dequiedt is active.

Publication


Featured researches published by Franck Dequiedt.


Nature | 2011

Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase

Virginia Guarani; Gianluca Deflorian; Claudio A. Franco; Marcus Krüger; Li Kun Phng; Katie Bentley; Louise Toussaint; Franck Dequiedt; Raul Mostoslavsky; Mirko H. H. Schmidt; Barbara Zimmermann; Ralf P. Brandes; Marina Mione; Christoph H. Westphal; Thomas Braun; Andreas M. Zeiher; Holger Gerhardt; Stefanie Dimmeler; Michael Potente

Notch signalling is a key intercellular communication mechanism that is essential for cell specification and tissue patterning, and which coordinates critical steps of blood vessel growth. Although subtle alterations in Notch activity suffice to elicit profound differences in endothelial behaviour and blood vessel formation, little is known about the regulation and adaptation of endothelial Notch responses. Here we report that the NAD+-dependent deacetylase SIRT1 acts as an intrinsic negative modulator of Notch signalling in endothelial cells. We show that acetylation of the Notch1 intracellular domain (NICD) on conserved lysines controls the amplitude and duration of Notch responses by altering NICD protein turnover. SIRT1 associates with NICD and functions as a NICD deacetylase, which opposes the acetylation-induced NICD stabilization. Consequently, endothelial cells lacking SIRT1 activity are sensitized to Notch signalling, resulting in impaired growth, sprout elongation and enhanced Notch target gene expression in response to DLL4 stimulation, thereby promoting a non-sprouting, stalk-cell-like phenotype. In vivo, inactivation of Sirt1 in zebrafish and mice causes reduced vascular branching and density as a consequence of enhanced Notch signalling. Our findings identify reversible acetylation of the NICD as a molecular mechanism to adapt the dynamics of Notch signalling, and indicate that SIRT1 acts as rheostat to fine-tune endothelial Notch responses.


The EMBO Journal | 2007

Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing.

Céline Marban; Franck Dequiedt; Stéphane de Walque; Laetitia Redel; Carine Van Lint; Dominique Aunis; Olivier Rohr

Following entry and reverse transcription, the HIV‐1 genome is integrated into the host genome. In contrast to productively infected cells, latently infected cells frequently harbor HIV‐1 genomes integrated in heterochromatic structures, allowing persistence of transcriptionally silent proviruses. Microglial cells are the main HIV‐1 target cells in the central nervous system and constitute an important reservoir for viral pathogenesis. In the present work, we show that, in microglial cells, the co‐repressor COUP‐TF interacting protein 2 (CTIP2) recruits a multienzymatic chromatin‐modifying complex and establishes a heterochromatic environment at the HIV‐1 promoter. We report that CTIP2 recruits histone deacetylase (HDAC)1 and HDAC2 to promote local histone H3 deacetylation at the HIV‐1 promoter region. In addition, DNA‐bound CTIP2 also associates with the histone methyltransferase SUV39H1, which increases local histone H3 lysine 9 methylation. This allows concomitant recruitment of HP1 proteins to the viral promoter and formation of local heterochromatin, leading to HIV‐1 silencing. Altogether, our findings uncover new therapeutic opportunities for purging latent HIV‐1 viruses from their cellular reservoirs.


Oncogene | 2007

Class IIa histone deacetylases: regulating the regulators

Maud Martin; Richard Kettmann; Franck Dequiedt

In the last decade, the identification of enzymes that regulate acetylation of histones and nonhistone proteins has revealed the key role of dynamic acetylation and deacetylation in various cellular processes. Mammalian histone deacetylases (HDACs), which catalyse the removal of acetyl groups from lysine residues, are grouped into three classes, on the basis of similarity to yeast counterparts. An abundance of experimental evidence has established class IIa HDACs as crucial transcriptional regulators of various developmental and differentiation processes. In the past 5 years, a tremendous effort has been dedicated to characterizing the regulation of these enzymes. In this review, we summarize the latest discoveries in the field and discuss the molecular and structural determinants of class IIa HDACs regulation. Finally, we emphasize that comprehension of the mechanisms underlying class IIa HDAC functions is essential for potential therapeutic applications.


Journal of Experimental Medicine | 2005

Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor–induced Nur77 expression and apoptosis

Franck Dequiedt; Johan Van Lint; Emily Lecomte; Viktor Van Duppen; Thomas Seufferlein; Jackie R. Vandenheede; Ruddy Wattiez; Richard Kettmann

The molecular basis of thymocyte negative selection, a crucial mechanism in establishing central tolerance, is not yet resolved. Histone deacetylases (HDACs) have emerged as key transcriptional regulators in several major developmental programs. Recently, we showed that the class IIa member, HDAC7, regulates negative selection by repressing expression of Nur77, an orphan nuclear receptor involved in antigen-induced apoptosis of thymocytes. Engagement of the T cell receptor (TCR) alleviates this repression through phosphorylation-dependent nuclear exclusion of HDAC7. However, the identity of the TCR-activated kinase that phosphorylates and inactivates HDAC7 was still unknown. Here, we demonstrate that TCR-induced nuclear export of HDAC7 and Nur77 expression is mediated by activation of protein kinase D (PKD). Indeed, active PKD stimulates HDAC7 nuclear export and Nur77 expression. In contrast, inhibition of PKD prevents TCR-mediated nuclear exclusion of HDAC7 and associated Nur77 activation. Furthermore, we show that HDAC7 is an interaction partner and a substrate for PKD. We identify four serine residues in the NH2 terminus of HDAC7 as targets for PKD. More importantly, a mutant of HDAC7 specifically deficient in phosphorylation by PKD, inhibits TCR-mediated apoptosis of T cell hybridomas. These findings indicate that PKD is likely to play a key role in the signaling pathways controlling negative selection.


Cancer Research | 2011

Phosphorylation of Carbonic Anhydrase IX Controls Its Ability to Mediate Extracellular Acidification in Hypoxic Tumors

Peter Ditte; Franck Dequiedt; Eliska Svastova; Alzbeta Hulikova; Anna Ohradanova-Repic; Miriam Zatovicova; Lucia Csaderova; Juraj Kopacek; Claudiu T. Supuran; Silvia Pastorekova; Jaromir Pastorek

In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Protein phosphatase 2A controls the activity of histone deacetylase 7 during T cell apoptosis and angiogenesis.

Maud Martin; Michael Potente; Veerle Janssens; Didier Vertommen; Jean-Claude Twizere; Mark H. Rider; Jozef Goris; Stefanie Dimmeler; Richard Kettmann; Franck Dequiedt

Class IIa histone deacetylases (HDACs) act as key transcriptional regulators in several important developmental programs. Their activities are controlled via phosphorylation-dependent nucleocytoplasmic shuttling. Phosphorylation of conserved serine residues triggers association with 14-3-3 proteins and cytoplasmic relocalization of class IIa HDACs, which leads to the derepression of their target genes. Although a lot of effort has been made toward the identification of the inactivating kinases that phosphorylate class IIa HDAC 14-3-3 motifs, the existence of an antagonistic protein phosphatase remains elusive. Here we identify PP2A as a phosphatase responsible for dephosphorylating the 14-3-3 binding sites in class IIa HDACs. Interestingly, dephosphorylation of class IIa HDACs by PP2A is prevented by competitive association of 14-3-3 proteins. Using both okadaic acid treatment and RNA interference, we demonstrate that PP2A constitutively dephosphorylates the class IIa member HDAC7 to control its biological functions as a regulator of T cell apoptosis and endothelial cell functions. This study unravels a dynamic interplay among 14-3-3s, protein kinases, and PP2A and provides a model for the regulation of class IIa HDACs.


AIDS Research and Human Retroviruses | 2000

Genetic Determinants of Bovine Leukemia Virus Pathogenesis

Luc Willems; Arsène Burny; Delphine Collete; O. Dangoisse; Franck Dequiedt; Jean-Stéphane Gatot; Pierre Kerkhofs; Laurent Lefèbvre; C. Merezak; T. Peremans; Daniel Portetelle; Jean-Claude Twizere; Richard Kettmann

The understanding of HTLV-induced disease is hampered by the lack of a suitable animal model allowing the study of both viral replication and leukemogenesis in vivo. Although valuable information has been obtained in different species, such as rabbits, mice, rats, and monkeys, none of these systems was able to conciliate topics as different as viral infectivity, propagation within the host, and generation of leukemic cells. An alternate strategy is based on the understanding of diseases induced by viruses closely related to HTLV-1, like bovine leukemia virus (BLV). Both viruses indeed belong to the same subfamily of retroviruses, harbor a similar genomic organization, and infect and transform cells of the hematopoietic system. The main advantage of the BLV system is that it allows direct experimentation in two different species, cattle and sheep.


Molecular and Cellular Biology | 2006

New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases.

Franck Dequiedt; Maud Martin; Julia von Blume; Didier Vertommen; Emily Lecomte; Nathalie Mari; Marie-France Heinen; Jean-Claude Twizere; Mei Chris Huang; Mark H. Rider; Helen Piwnica-Worms; Thomas Seufferlein; Richard Kettmann

ABSTRACT Class IIa histone deacetylases (HDACs) are found both in the cytoplasm and in the nucleus where they repress genes involved in several major developmental programs. In response to specific signals, the repressive activity of class IIa HDACs is neutralized through their phosphorylation on multiple N-terminal serine residues and 14-3-3-mediated nuclear exclusion. Here, we demonstrate that class IIa HDACs are subjected to signal-independent nuclear export that relies on their constitutive phosphorylation. We identify EMK and C-TAK1, two members of the microtubule affinity-regulating kinase (MARK)/Par-1 family, as regulators of this process. We further show that EMK and C-TAK1 phosphorylate class IIa HDACs on one of their multiple 14-3-3 binding sites and alter their subcellular localization and repressive function. Using HDAC7 as a paradigm, we extend these findings by demonstrating that signal-independent phosphorylation of the most N-terminal serine residue by the MARK/Par-1 kinases, i.e., Ser155, is a prerequisite for the phosphorylation of the nearby 14-3-3 site, Ser181. We propose that this multisite hierarchical phosphorylation by a variety of kinases allows for sophisticated regulation of class IIa HDACs function.


Retrovirology | 2012

Host-Pathogen Interactome Mapping for HTLV-1 and -2 Retroviruses

Nicolas Simonis; Jean François Rual; Irma Lemmens; Mathieu Boxus; Tomoko Hirozane-Kishikawa; Jean Stéphane Gatot; Amélie Dricot; Tong Hao; Didier Vertommen; Sebastien Legros; Sarah Daakour; Niels Klitgord; Maud Martin; Jean François Willaert; Franck Dequiedt; Vincent Navratil; Michael E. Cusick; Arsène Burny; Carine Van Lint; David E. Hill; Jan Tavernier; Richard Kettmann; Marc Vidal; Jean-Claude Twizere

BackgroundHuman T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.ResultsWe employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.ConclusionsThis study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.


The International Journal of Developmental Biology | 2009

Class IIa histone deacetylases: conducting development and differentiation

Maud Martin; Richard Kettmann; Franck Dequiedt

The emergence of specialized cell types and their organisation into organs and tissues involve the temporal modulation of many genes that are essential for coordinating the correct timing of instructive signals. These transcriptional changes are orchestrated with a precision that reminds that of a classical symphony. Extracellular signals are transmitted to key integrators, which then orchestrate activation or repression of specific genes. In the last decade, class IIa HDACs have emerged as crucial regulators in various developmental and differentiation processes. This review focuses on the latest studies that have provided new insights into the biological functions of class IIa HDACs and discusses important aspects of their regulation. Elucidating cellular and molecular mechanisms by which functions of class IIa HDACs are modulated could potentially lead to new therapeutic opportunities for various diseases.

Collaboration


Dive into the Franck Dequiedt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arsène Burny

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge