Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franck Mauvais-Jarvis is active.

Publication


Featured researches published by Franck Mauvais-Jarvis.


Cell | 2007

Endocrine Regulation of Energy Metabolism by the Skeleton

Na Kyung Lee; Hideaki Sowa; Eiichi Hinoi; Mathieu Ferron; Jong Deok Ahn; Cyrille Confavreux; Romain Dacquin; Patrick J. Mee; Marc D. McKee; Dae Young Jung; Zhiyou Zhang; Jason K. Kim; Franck Mauvais-Jarvis; Patricia Ducy; Gerard Karsenty

The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.


Journal of Clinical Investigation | 2000

Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle

Jason K. Kim; M. Dodson Michael; Stephen F. Previs; Odile D. Peroni; Franck Mauvais-Jarvis; Susanne Neschen; Barbara B. Kahn; C. Ronald Kahn; Gerald I. Shulman

Obesity and insulin resistance in skeletal muscle are two major factors in the pathogenesis of type 2 diabetes. Mice with muscle-specific inactivation of the insulin receptor gene (MIRKO) are normoglycemic but have increased fat mass. To identify the potential mechanism for this important association, we examined insulin action in specific tissues of MIRKO and control mice under hyperinsulinemic-euglycemic conditions. We found that insulin-stimulated muscle glucose transport and glycogen synthesis were decreased by about 80% in MIRKO mice, whereas insulin-stimulated fat glucose transport was increased threefold in MIRKO mice. These data demonstrate that selective insulin resistance in muscle promotes redistribution of substrates to adipose tissue thereby contributing to increased adiposity and development of the prediabetic syndrome.


Nature Medicine | 2012

Targeted estrogen delivery reverses the metabolic syndrome

Brian Finan; Bin Yang; Nickki Ottaway; Kerstin Stemmer; Timo D. Müller; Chun Xia Yi; Kirk M. Habegger; Sonja C. Schriever; Cristina García-Cáceres; Dhiraj G. Kabra; Jazzminn Hembree; Jenna Holland; Christine Raver; Randy J. Seeley; Wolfgang Hans; Martin Irmler; Johannes Beckers; Martin Hrabě de Angelis; Joseph P. Tiano; Franck Mauvais-Jarvis; Diego Perez-Tilve; Paul T. Pfluger; Lianshan Zhang; Vasily Gelfanov; Richard D. DiMarchi; Matthias H. Tschöp

We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1–targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1–estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases.


Trends in Endocrinology and Metabolism | 2011

Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity

Franck Mauvais-Jarvis

Because of increasing life expectancy, the contribution of age-related estrogen or androgen deficiency to obesity and type 2 diabetes will become a new therapeutic challenge. This review integrates current concepts on the mechanisms through which estrogen receptors (ERs) and androgen receptor (AR) regulate energy homeostasis in rodents and humans. In females, estrogen maintains energy homeostasis via ERα and ERβ, by suppressing energy intake and lipogenesis, enhancing energy expenditure, and ameliorating insulin secretion and sensitivity. In males, testosterone is converted to estrogen and maintains fuel homeostasis via ERs and AR, which share related functions to suppress adipose tissue accumulation and improve insulin sensitivity. We suggest that ERs and AR could be potential targets in the prevention of age-related metabolic disorders.


Nature Reviews Endocrinology | 2012

Importance of oestrogen receptors to preserve functional β-cell mass in diabetes

Joseph P. Tiano; Franck Mauvais-Jarvis

Protecting the functional mass of insulin-producing β cells of the pancreas is a major therapeutic challenge in patients with type 1 (T1DM) or type 2 diabetes mellitus (T2DM). The gonadal hormone 17β-oestradiol (E2) is involved in reproductive, bone, cardiovascular and neuronal physiology. In rodent models of T1DM and T2DM, treatment with E2 protects pancreatic β cells against oxidative stress, amyloid polypeptide toxicity, lipotoxicity and apoptosis. Three oestrogen receptors (ERs)—ERα, ERβ and the G protein-coupled ER (GPER)—have been identified in rodent and human β cells. Whereas activation of ERα enhances glucose-stimulated insulin biosynthesis, reduces islet toxic lipid accumulation and promotes β-cell survival from proapoptotic stimuli, activation of ERβ increases glucose-stimulated insulin secretion. However, activation of GPER protects β cells from apoptosis, raises glucose-stimulated insulin secretion and lipid homeostasis without affecting insulin biosynthesis. Oestrogens are also improving islet engraftment in rodent models of pancreatic islet transplantation. This Review describes developments in the role of ERs in islet insulin biosynthesis and secretion, lipid homeostasis and survival. Moreover, we discuss why and how enhancing ER action in β cells without the undesirable effect of general oestrogen therapy is a therapeutic avenue to preserve functional β-cell mass in patients with diabetes mellitus.


Diabetes | 2009

Importance of Extranuclear Estrogen Receptor-α and Membrane G Protein–Coupled Estrogen Receptor in Pancreatic Islet Survival

Suhuan Liu; Cedric Le May; Winifred P.S. Wong; Robert D. Ward; Deborah J. Clegg; Marco Marcelli; Kenneth S. Korach; Franck Mauvais-Jarvis

OBJECTIVE We showed that 17β-estradiol (E2) favors pancreatic β-cell survival via the estrogen receptor-α (ERα) in mice. E2 activates nuclear estrogen receptors via an estrogen response element (ERE). E2 also activates nongenomic signals via an extranuclear form of ERα and the G protein–coupled estrogen receptor (GPER). We studied the contribution of estrogen receptors to islet survival. RESEARCH DESIGN AND METHODS We used mice and islets deficient in estrogen receptor-α (αERKO−/−), estrogen receptor-β (βERKO−/−), estrogen receptor-α and estrogen receptor-β (αβERKO−/−), and GPER (GPERKO−/−); a mouse lacking ERα binding to the ERE; and human islets. These mice and islets were studied in combination with receptor-specific pharmacological probes. RESULTS We show that ERα protection of islet survival is ERE independent and that E2 favors islet survival through extranuclear and membrane estrogen receptor signaling. We show that ERβ plays a minor cytoprotective role compared to ERα. Accordingly, βERKO−/− mice are mildly predisposed to streptozotocin-induced islet apoptosis. However, combined elimination of ERα and ERβ in mice does not synergize to provoke islet apoptosis. In αβERKO−/− mice and their islets, E2 partially prevents apoptosis suggesting that an alternative pathway compensates for ERα/ERβ deficiency. We find that E2 protection of islet survival is reproduced by a membrane-impermeant E2 formulation and a selective GPER agonist. Accordingly, GPERKO−/− mice are susceptible to streptozotocin-induced insulin deficiency. CONCLUSIONS E2 protects β-cell survival through ERα and ERβ via ERE-independent, extra-nuclear mechanisms, as well as GPER-dependent mechanisms. The present study adds a novel dimension to estrogen biology in β-cells and identifies GPER as a target to protect islet survival.


Biology of Sex Differences | 2015

Sex differences in metabolic homeostasis, diabetes, and obesity

Franck Mauvais-Jarvis

There are fundamental aspects of the control of metabolic homeostasis that are regulated differently in males and females. This sex asymmetry represents an evolutionary paradigm for females to resist the loss of energy stores. This perspective discusses the most fundamental sex differences in metabolic homeostasis, diabetes, and obesity. Together, the role of genetic sex, the programming effect of testosterone in the prenatal period in males, and the activational role of sex hormones at puberty produce two different biological systems in males and females that need to be studied separately. These sex-specific differences in energy homeostasis and metabolic dysfunction represent an untested source of factors that can be harnessed to develop relevant sex-based therapeutic avenues for diabetes, metabolic syndrome, and obesity.


Diabetes | 2014

Human β-Cell Proliferation and Intracellular Signaling Part 2: Still Driving in the Dark Without a Road Map

Ernesto Bernal-Mizrachi; Rohit N. Kulkarni; Donald K. Scott; Franck Mauvais-Jarvis; Andrew F. Stewart; Adolfo Garcia-Ocaña

Enhancing β-cell proliferation is a major goal for type 1 and type 2 diabetes research. Unraveling the network of β-cell intracellular signaling pathways that promote β-cell replication can provide the tools to address this important task. In a previous Perspectives in Diabetes article, we discussed what was known regarding several important intracellular signaling pathways in rodent β-cells, including the insulin receptor substrate/phosphatidylinositol-3 kinase/Akt (IRS-PI3K-Akt) pathways, glycogen synthase kinase-3 (GSK3) and mammalian target of rapamycin (mTOR) S6 kinase pathways, protein kinase Cζ (PKCζ) pathways, and their downstream cell-cycle molecular targets, and contrasted that ample knowledge to the small amount of complementary data on human β-cell intracellular signaling pathways. In this Perspectives, we summarize additional important information on signaling pathways activated by nutrients, such as glucose; growth factors, such as epidermal growth factor, platelet-derived growth factor, and Wnt; and hormones, such as leptin, estrogen, and progesterone, that are linked to rodent and human β-cell proliferation. With these two Perspectives, we attempt to construct a brief summary of knowledge for β-cell researchers on mitogenic signaling pathways and to emphasize how little is known regarding intracellular events linked to human β-cell replication. This is a critical aspect in the long-term goal of expanding human β-cells for the prevention and/or cure of type 1 and type 2 diabetes.


Journal of Biological Chemistry | 1998

Identification of the Rat Adapter Grb14 as an Inhibitor of Insulin Actions

Anne Kasus-Jacobi; Dominique Perdereau; Colette Auzan; Eric Clauser; Emmanuel Van Obberghen; Franck Mauvais-Jarvis; Jean Girard; Anne-Françoise Burnol

We cloned by interaction with the β-subunit of the insulin receptor the rat variant of the human adapter Grb14 (rGrb14). rGrb14 is specifically expressed in rat insulin-sensitive tissues and in the brain. The binding of rGrb14 to insulin receptors is insulin-dependent in vivo in Chinese hamster ovary (CHO) cells overexpressing both proteins and importantly, in rat liver expressing physiological levels of proteins. However, rGrb14 is not a substrate of the tyrosine kinase of the receptor. In the two-hybrid system, two domains of rGrb14 can mediate the interaction with insulin receptors: the Src homology 2 (SH2) domain and a region between the PH and SH2 domains that we named PIR (forphosphorylated insulin receptor-interactingregion). In vitro interaction assays using deletion mutants of rGrb14 show that the PIR, but not the SH2 domain, is able to coprecipitate insulin receptors, suggesting that the PIR is the major binding domain of rGrb14. The interaction between rGrb14 and the insulin receptors is almost abolished by mutating tyrosine residue Tyr1150 or Tyr1151 of the receptor. The overexpression of rGrb14 in CHO-IR cells decreases insulin stimulation of both DNA and glycogen synthesis. These effects are accompanied by a decrease in insulin-stimulated tyrosine phosphorylation of IRS-1, but insulin receptor autophosphorylation is unaltered. These findings suggest that rGrb14 could be a new downstream signaling component of the insulin-mediated pathways.


Endocrinology | 2010

Minireview: Estrogenic Protection of β-Cell Failure in Metabolic Diseases

Suhuan Liu; Franck Mauvais-Jarvis

The prevalence of diabetes is lower in premenopausal women, especially diabetic syndromes with insulin deficiency, suggesting that the female hormone 17beta-estradiol protects pancreatic beta-cell function. In classical rodent models of beta-cell failure, 17beta-estradiol at physiological concentrations protects pancreatic beta-cells against lipotoxicity, oxidative stress, and apoptosis. In this review, we integrate evidence showing that estrogens and their receptors have direct effects on islet biology. The estrogen receptor (ER)-alpha, ER beta, and the G-protein coupled ER are present in beta-cells and enhance islet survival. They also improve islet lipid homeostasis and insulin biosynthesis. We also discuss evidence that ERs modulate insulin sensitivity and energy homeostasis, which indirectly alter beta-cell biology in diabetic and obese conditions.

Collaboration


Dive into the Franck Mauvais-Jarvis's collaboration.

Top Co-Authors

Avatar

Joseph P. Tiano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongju Wu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge