Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franco R. D'Alessio is active.

Publication


Featured researches published by Franco R. D'Alessio.


Journal of Clinical Investigation | 2009

CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury

Franco R. D'Alessio; Kenji Tsushima; Neil R. Aggarwal; Erin E. West; Matthew Willett; Martin F. Britos; Matthew R. Pipeling; Roy G. Brower; Rubin M. Tuder; John F. McDyer; Landon S. King

Acute lung injury (ALI) is characterized by rapid alveolar injury, inflammation, cytokine induction, and neutrophil accumulation. Although early events in the pathogenesis of ALI have been defined, the mechanisms underlying resolution are unknown. As a model of ALI, we administered intratracheal (i.t.) LPS to mice and observed peak lung injury 4 days after the challenge, with resolution by day 10. Numbers of alveolar lymphocytes increased as injury resolved. To examine the role of lymphocytes in this response, lymphocyte-deficient Rag-1-/- and C57BL/6 WT mice were exposed to i.t. LPS. The extent of injury was similar between the groups of mice through day 4, but recovery was markedly impaired in the Rag-1-/- mice. Adoptive transfer studies revealed that infusion of CD4+CD25+Foxp3+ Tregs as late as 24 hours after i.t. LPS normalized resolution in Rag-1-/- mice. Similarly, Treg depletion in WT mice delayed recovery. Treg transfer into i.t. LPS-exposed Rag-1-/- mice also corrected the elevated levels of alveolar proinflammatory cytokines and increased the diminished levels of alveolar TGF-beta and neutrophil apoptosis. Mechanistically, Treg-mediated resolution of lung injury was abrogated by TGF-beta inhibition. Moreover, BAL of patients with ALI revealed dynamic changes in CD3+CD4+CD25hiCD127loFoxp3+ cells. These results indicate that Tregs modify innate immune responses during resolution of lung injury and suggest potential targets for treating ALI, for which there are no specific therapies currently available.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Diverse macrophage populations mediate acute lung inflammation and resolution

Neil R. Aggarwal; Landon S. King; Franco R. D'Alessio

Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the bodys immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.


Frontiers in Immunology | 2014

Regulatory T cells as immunotherapy

Benjamin D. Singer; Landon S. King; Franco R. D'Alessio

Regulatory T cells (Tregs) suppress exuberant immune system activation and promote immunologic tolerance. Because Tregs modulate both innate and adaptive immunity, the biomedical community has developed an intense interest in using Tregs for immunotherapy. Conditions that require clinical tolerance to improve outcomes – autoimmune disease, solid organ transplantation, and hematopoietic stem cell transplantation – may benefit from Treg immunotherapy. Investigators have designed ex vivo strategies to isolate, preserve, expand, and infuse Tregs. Protocols to manipulate Treg populations in vivo have also been considered. Barriers to clinically feasible Treg immunotherapy include Treg stability, off-cell effects, and demonstration of cell preparation purity and potency. Clinical trials involving Treg adoptive transfer to treat graft versus host disease preliminarily demonstrated the safety and efficacy of Treg immunotherapy in humans. Future work will need to confirm the safety of Treg immunotherapy and establish the efficacy of specific Treg subsets for the treatment of immune-mediated disease.


American Journal of Respiratory and Critical Care Medicine | 2012

A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting

D. Clark Files; Franco R. D'Alessio; Laura Johnston; Priya Kesari; Neil R. Aggarwal; Brian T. Garibaldi; Jason R. Mock; Jessica L. Simmers; Antonio DeGorordo; Jared Murdoch; Monte S. Willis; Cam Patterson; Clarke G. Tankersley; María Laura Messi; Chun Liu; Osvaldo Delbono; J. David Furlow; Sue C. Bodine; Ronald D. Cohn; Landon S. King; Michael T. Crow

RATIONALE Acute lung injury (ALI) is a debilitating condition associated with severe skeletal muscle weakness that persists in humans long after lung injury has resolved. The molecular mechanisms underlying this condition are unknown. OBJECTIVES To identify the muscle-specific molecular mechanisms responsible for muscle wasting in a mouse model of ALI. METHODS Changes in skeletal muscle weight, fiber size, in vivo contractile performance, and expression of mRNAs and proteins encoding muscle atrophy-associated genes for muscle ring finger-1 (MuRF1) and atrogin1 were measured. Genetic inactivation of MuRF1 or electroporation-mediated transduction of miRNA-based short hairpin RNAs targeting either MuRF1 or atrogin1 were used to identify their role in ALI-associated skeletal muscle wasting. MEASUREMENTS AND MAIN RESULTS Mice with ALI developed profound muscle atrophy and preferential loss of muscle contractile proteins associated with reduced muscle function in vivo. Although mRNA expression of the muscle-specific ubiquitin ligases, MuRF1 and atrogin1, was increased in ALI mice, only MuRF1 protein levels were up-regulated. Consistent with these changes, suppression of MuRF1 by genetic or biochemical approaches prevented muscle fiber atrophy, whereas suppression of atrogin1 expression was without effect. Despite resolution of lung injury and down-regulation of MuRF1 and atrogin1, force generation in ALI mice remained suppressed. CONCLUSIONS These data show that MuRF1 is responsible for mediating muscle atrophy that occurs during the period of active lung injury in ALI mice and that, as in humans, skeletal muscle dysfunction persists despite resolution of lung injury.


Journal of Immunology | 2012

Resolution of Experimental Lung Injury by Monocyte-Derived Inducible Nitric Oxide Synthase

Franco R. D'Alessio; Kenji Tsushima; Neil R. Aggarwal; Jason R. Mock; Yoshiki Eto; Brian T. Garibaldi; Daniel C. Files; Claudia R. Avalos; Jackie V. Rodriguez; Adam T. Waickman; Sekhar P. Reddy; David B. Pearse; Venkataramana K. Sidhaye; Paul M. Hassoun; Michael T. Crow; Landon S. King

Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS−/− mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Moderate oxygen augments lipopolysaccharide-induced lung injury in mice

Neil R. Aggarwal; Franco R. D'Alessio; Kenji Tsushima; D. Clark Files; Mahendra Damarla; Venkataramana K. Sidhaye; Mostafa Fraig; Vsevolod Y. Polotsky; Landon S. King

Despite the associated morbidity and mortality, underlying mechanisms leading to the development of acute lung injury (ALI) remain incompletely understood. Frequently, ALI develops in the hospital, coinciding with institution of various therapies, including the use of supplemental oxygen. Although pathological evidence of hyperoxia-induced ALI in humans has yet to be proven, animal studies involving high oxygen concentration reproducibly induce ALI. The potentially injurious role of lower and presumably safer oxygen concentrations has not been well characterized in any species. We hypothesized that in the setting of a preexisting insult to the lung, the addition of moderate-range oxygen can augment lung injury. Our model of low-dose intratracheal LPS (IT LPS) followed by 60% oxygen caused a significant increase in ALI compared with LPS or oxygen alone with increased alveolar neutrophils, histological injury, and epithelial barrier permeability. In the LPS plus oxygen group, regulatory T cell number was reduced, and macrophage activation markers were increased, compared with LPS alone. Antibody-mediated depletion of neutrophils significantly abrogated the observed lung injury for all measured factors. The enhanced presence of alveolar neutrophils in the setting of LPS and oxygen is due, at least in part, to elevated chemokine gradients signaling neutrophils to the alveolar space. We believe these results strongly support an effect of lower concentrations of oxygen to augment the severity of a mild preexisting lung injury and warrants further investigation in both animals and humans.


Experimental Lung Research | 2011

Interleukin-6 mediates pulmonary vascular permeability in a two-hit model of ventilator-associated lung injury

Ozlem U. Gurkan; Chaoxia He; Rachel Zielinski; Hamid Rabb; Landon S. King; Jeffrey M. Dodd-o; Franco R. D'Alessio; Neil R. Aggarwal; David B. Pearse; Patrice M. Becker

ABSTRACT To test the hypothesis that interleukin-6 (IL-6) contributes to the development of ventilator-associated lung injury (VALI), IL-6–deficient (IL6−/–) and wild-type control (WT) mice received intratracheal hydrochloric acid followed by randomization to mechanical ventilation (MV + IT HCl) or spontaneous ventilation (IT HCl). After 4 hours, injury was assessed by estimation of lung lavage protein concentration and total and differential cell counts, wet/dry lung weight ratio, pulmonary cell death, histologic inflammation score (LIS), and parenchymal myeloperoxidase (MPO) concentration. Vascular endothelial growth factor (VEGF) concentration was measured in lung lavage and homogenate, as IL-6 and stretch both regulate expression of this potent mediator of permeability. MV-induced increases in alveolar barrier dysfunction and lavage VEGF were attenuated in IL6−/− mice as compared with WT controls, whereas tissue VEGF concentration increased. The effects of IL-6 deletion on alveolar permeability and VEGF concentration were inflammation independent, as parenchymal MPO concentration, LIS, and lavage total and differential cell counts did not differ between WT and IL6−/− mice following MV + IT HCl. These data support a role for IL-6 in promoting VALI in this two-hit model. Strategies to interfere with IL-6 expression or signaling may represent important therapeutic targets to limit the injurious effects of MV in inflamed lungs.


Mucosal Immunology | 2014

Foxp3 + regulatory T cells promote lung epithelial proliferation

Jason R. Mock; Brian T. Garibaldi; Neil R. Aggarwal; J. Jenkins; Nathachit Limjunyawong; Benjamin D. Singer; Eric Chau; R. Rabold; Daniel Clark Files; Venkataramana K. Sidhaye; Wayne Mitzner; E. M. Wagner; Landon S. King; Franco R. D'Alessio

Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality each year. There is a paucity of information regarding the mechanisms necessary for ARDS resolution. Foxp3+ regulatory T cells (Foxp3+ Treg cells) have been shown to be an important determinant of resolution in an experimental model of lung injury. We demonstrate that intratracheal delivery of endotoxin (lipopolysaccharide) elicits alveolar epithelial damage from which the epithelium undergoes proliferation and repair. Epithelial proliferation coincided with an increase in Foxp3+ Treg cells in the lung during the course of resolution. To dissect the role that Foxp3+ Treg cells exert on epithelial proliferation, we depleted Foxp3+ Treg cells, which led to decreased alveolar epithelial proliferation and delayed lung injury recovery. Furthermore, antibody-mediated blockade of CD103, an integrin, which binds to epithelial expressed E-cadherin decreased Foxp3+ Treg numbers and decreased rates of epithelial proliferation after injury. In a non-inflammatory model of regenerative alveologenesis, left lung pneumonectomy, we found that Foxp3+ Treg cells enhanced epithelial proliferation. Moreover, Foxp3+ Treg cells co-cultured with primary type II alveolar cells (AT2) directly increased AT2 cell proliferation in a CD103-dependent manner. These studies provide evidence of a new and integral role for Foxp3+ Treg cells in repair of the lung epithelium.


PLOS ONE | 2011

Critical Transition in Tissue Homeostasis Accompanies Murine Lung Senescence

Carla L. Calvi; Megan Podowski; Franco R. D'Alessio; Shana Metzger; Kaori Misono; Hataya Poonyagariyagorn; Armando Lopez-Mercado; Therese Ku; Thomas Lauer; Christopher Cheadle; C. Conover Talbot; Chunfa Jie; Sharon A. McGrath-Morrow; Landon S. King; Jeremy D. Walston; Enid R. Neptune

Background Respiratory dysfunction is a major contributor to morbidity and mortality in aged populations. The susceptibility to pulmonary insults is attributed to “low pulmonary reserve”, ostensibly reflecting a combination of age-related musculoskeletal, immunologic and intrinsic pulmonary dysfunction. Methods/Principal Findings Using a murine model of the aging lung, senescent DBA/2 mice, we correlated a longitudinal survey of airspace size and injury measures with a transcriptome from the aging lung at 2, 4, 8, 12, 16 and 20 months of age. Morphometric analysis demonstrated a nonlinear pattern of airspace caliber enlargement with a critical transition occurring between 8 and 12 months of age marked by an initial increase in oxidative stress, cell death and elastase activation which is soon followed by inflammatory cell infiltration, immune complex deposition and the onset of airspace enlargement. The temporally correlative transcriptome showed exuberant induction of immunoglobulin genes coincident with airspace enlargement. Immunohistochemistry, ELISA analysis and flow cytometry demonstrated increased immunoglobulin deposition in the lung associated with a contemporaneous increase in activated B-cells expressing high levels of TLR4 (toll receptor 4) and CD86 and macrophages during midlife. These midlife changes culminate in progressive airspace enlargement during late life stages. Conclusion/Significance Our findings establish that a tissue-specific aging program is evident during a presenescent interval which involves early oxidative stress, cell death and elastase activation, followed by B lymphocyte and macrophage expansion/activation. This sequence heralds the progression to overt airspace enlargement in the aged lung. These signature events, during middle age, indicate that early stages of the aging immune system may have important correlates in the maintenance of tissue morphology. We further show that time-course analyses of aging models, when informed by structural surveys, can reveal nonintuitive signatures of organ-specific aging pathology.


PLOS ONE | 2012

A Novel Role for Aquaporin-5 in Enhancing Microtubule Organization and Stability

Venkataramana K. Sidhaye; Eric Chau; Vasudha Srivastava; Srinivas Sirimalle; Chinmayee Balabhadrapatruni; Neil R. Aggarwal; Franco R. D'Alessio; Douglas N. Robinson; Landon S. King

Aquaporin-5 (AQP5) is a water-specific channel located on the apical surface of airway epithelial cells. In addition to regulating transcellular water permeability, AQP5 can regulate paracellular permeability, though the mechanisms by which this occurs have not been determined. Microtubules also regulate paracellular permeability. Here, we report that AQP5 promotes microtubule assembly and helps maintain the assembled microtubule steady state levels with slower turnover dynamics in cells. Specifically, reduced levels of AQP5 correlated with lower levels of assembled microtubules and decreased paracellular permeability. In contrast, overexpression of AQP5 increased assembly of microtubules, with evidence of increased MT stability, and promoted the formation of long straight microtubules in the apical domain of the epithelial cells. These findings indicate that AQP5-mediated regulation of microtubule dynamics modulates airway epithelial barrier properties and epithelial function.

Collaboration


Dive into the Franco R. D'Alessio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Landon S. King

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian T. Garibaldi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jason R. Mock

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Johnston

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge