Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Aguet is active.

Publication


Featured researches published by François Aguet.


Nature Methods | 2017

Massively parallel single-nucleus RNA-seq with DroNc-seq

Naomi Habib; Inbal Avraham-Davidi; Anindita Basu; Tyler Burks; Karthik Shekhar; Matan Hofree; Sourav R Choudhury; François Aguet; Ellen T. Gelfand; Kristin Ardlie; David A. Weitz; Orit Rozenblatt-Rosen; Feng Zhang; Aviv Regev

Single-nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are preserved or cannot be dissociated, but it does not provide high throughput. Here, we develop DroNc-seq: massively parallel sNuc-seq with droplet technology. We profile 39,111 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient, and unbiased classification of cell types, paving the way for systematic charting of cell atlases.


Nature | 2017

Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood

Julia Joung; Jesse M. Engreitz; Silvana Konermann; Omar O. Abudayyeh; Vanessa Verdine; François Aguet; Jonathan S. Gootenberg; Neville E. Sanjana; Jason Wright; Charles P. Fulco; Yuen-Yi Tseng; Charles H. Yoon; Jesse S. Boehm; Eric S. Lander; Feng Zhang

Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes-for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes—for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR–Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.


Nature | 2017

Landscape of X chromosome inactivation across human tissues

Taru Tukiainen; Alexandra-Chloé Villani; Angela Yen; Manuel A. Rivas; Jamie L. Marshall; Rahul Satija; Matt Aguirre; Laura Gauthier; Mark Fleharty; Andrew Kirby; Beryl B. Cummings; Stephane E. Castel; Konrad J. Karczewski; François Aguet; Andrea Byrnes; Tuuli Lappalainen; Aviv Regev; Kristin Ardlie; Nir Hacohen; Daniel G. MacArthur

X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of ‘escape’ from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.


Nature Genetics | 2017

Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease

Derek Klarin; Qiuyu Martin Zhu; Connor A. Emdin; Mark Chaffin; Steven Horner; Brian J. McMillan; Alison Leed; Michael E. Weale; Chris C. A. Spencer; François Aguet; Ayellet V. Segrè; Kristin Ardlie; Amit Khera; Virendar K Kaushik; Pradeep Natarajan; Sekar Kathiresan

UK Biobank is among the worlds largest repositories for phenotypic and genotypic information in individuals of European ancestry. We performed a genome-wide association study in UK Biobank testing ∼9 million DNA sequence variants for association with coronary artery disease (4,831 cases and 115,455 controls) and carried out meta-analysis with previously published results. We identified 15 new loci, bringing the total number of loci associated with coronary artery disease to 95 at the time of analysis. Phenome-wide association scanning showed that CCDC92 likely affects coronary artery disease through insulin resistance pathways, whereas experimental analysis suggests that ARHGEF26 influences the transendothelial migration of leukocytes.


bioRxiv | 2016

Local genetic effects on gene expression across 44 human tissues

François Aguet; Andrew Anand Brown; Stephane E. Castel; Joe R. Davis; Pejman Mohammadi; Ayellet V. Segrè; Zachary Zappala; Nathan S. Abell; Laure Frésard; Eric R. Gamazon; Ellen T. Gelfand; Machael J Gloudemans; Yuan He; Farhad Hormozdiari; Xiao Li; Xin Li; Boxiang Liu; Diego Garrido-Martín; Halit Ongen; John Palowitch; YoSon Park; Christine B. Peterson; Gerald Quon; Stephan Ripke; Andrey A. Shabalin; Tyler C. Shimko; Benjamin J. Strober; Timothy J. Sullivan; Nicole A. Teran; Emily K. Tsang

Expression quantitative trait locus (eQTL) mapping provides a powerful means to identify functional variants influencing gene expression and disease pathogenesis. We report the identification of cis-eQTLs from 7,051 post-mortem samples representing 44 tissues and 449 individuals as part of the Genotype-Tissue Expression (GTEx) project. We find a cis-eQTL for 88% of all annotated protein-coding genes, with one-third having multiple independent effects. We identify numerous tissue-specific cis-eQTLs, highlighting the unique functional impact of regulatory variation in diverse tissues. By integrating large-scale functional genomics data and state-of-the-art fine-mapping algorithms, we identify multiple features predictive of tissue-specific and shared regulatory effects. We improve estimates of cis-eQTL sharing and effect sizes using allele specific expression across tissues. Finally, we demonstrate the utility of this large compendium of cis-eQTLs for understanding the tissue-specific etiology of complex traits, including coronary artery disease. The GTEx project provides an exceptional resource that has improved our understanding of gene regulation across tissues and the role of regulatory variation in human genetic diseases.


bioRxiv | 2017

DroNc-Seq: Deciphering cell types in human archived brain tissues by massively-parallel single nucleus RNA-seq

Naomi Habib; Anindita Basu; Inbal Avraham-Davidi; Tyler Burks; Sourav R Choudhury; François Aguet; Ellen T. Gelfand; Kristin Ardlie; David A. Weitz; Orit Rozenblatt-Rosen; Feng Zhang; Aviv Regev

Single nucleus RNA-Seq (sNuc-Seq) profiles RNA from tissues that are preserved or cannot be dissociated, but does not provide the throughput required to analyse many cells from complex tissues. Here, we develop DroNc-Seq, massively parallel sNuc-Seq with droplet technology. We profile 29,543 nuclei from mouse and human archived brain samples to demonstrate sensitive, efficient and unbiased classification of cell types, paving the way for charting systematic cell atlases.


bioRxiv | 2016

Distant regulatory effects of genetic variation in multiple human tissues

Brian Jo; Yuan He; Benjamin J. Strober; Princy Parsana; François Aguet; Andrew Anand Brown; Stephane E. Castel; Eric R. Gamazon; Ariel D.H. Gewirtz; Genna Gliner; Buhm Han; Amy Z He; Eun Yong Kang; Ian C. McDowell; Xiao Li; Pejman Mohammadi; Christine B. Peterson; Gerald Quon; Ashis Saha; Ayellet V. Segrè; Jae Hoon Sul; Timothy J. Sullivan; Kristin Ardlie; Christopher D. Brown; Donald F. Conrad; Nancy J. Cox; Emmanouil T. Dermitzakis; Eleazar Eskin; Manolis Kellis; Tuuli Lappalainen

Understanding the genetics of gene regulation provides information on the cellular mechanisms through which genetic variation influences complex traits. Expression quantitative trait loci, or eQTLs, are enriched for polymorphisms that have been found to be associated with disease risk. While most analyses of human data has focused on regulation of expression by nearby variants (cis-eQTLs), distal or trans-eQTLs may have broader effects on the transcriptome and important phenotypic consequences, necessitating a comprehensive study of the effects of genetic variants on distal gene transcription levels. In this work, we identify trans-eQTLs in the Genotype Tissue Expression (GTEx) project data1, consisting of 449 individuals with RNA-sequencing data across 44 tissue types. We find 81 genes with a trans-eQTL in at least one tissue, and we demonstrate that trans-eQTLs are more likely than cis-eQTLs to have effects specific to a single tissue. We evaluate the genomic and functional properties of trans-eQTL variants, identifying strong enrichment in enhancer elements and Piwi-interacting RNA clusters. Finally, we describe three tissue-specific regulatory loci underlying relevant disease associations: 9q22 in thyroid that has a role in thyroid cancer, 5q31 in skeletal muscle, and a previously reported master regulator near KLF14 in adipose. These analyses provide a comprehensive characterization of trans-eQTLs across human tissues, which contribute to an improved understanding of the tissue-specific cellular mechanisms of regulatory genetic variation.


Nature Communications | 2018

The effects of death and post-mortem cold ischemia on human tissue transcriptomes

Pedro Ferreira; Manuel Muñoz-Aguirre; Ferran Reverter; Caio P. Sá Godinho; Abel Sousa; Alicia Amadoz; Reza Sodaei; Marta R. Hidalgo; Dmitri D. Pervouchine; Ramil Nurtdinov; Alessandra Breschi; Raziel Amador; Patrícia Oliveira; Cankut Cubuk; Joao Curado; François Aguet; Carla Oliveira; Joaquín Dopazo; Michael Sammeth; Kristin Ardlie; Roderic Guigó

Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.RNA levels in post-mortem tissue can differ greatly from those before death. Studying the effect of post-mortem interval on the transcriptome in 36 human tissues, Ferreira et al. find that the response to death is largely tissue-specific and develop a model to predict time since death based on RNA data.


bioRxiv | 2018

A systematic survey of human tissue-specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation

Robert Yang; Jie Quan; Reza Sodaie; François Aguet; Ayellet V. Segrè; John A. Allen; Thomas A. Lanz; Veronica Reinhart; Matthew E. Crawford; Samuel Hasson; Kristin Ardlie; Roderic Guigó; Hualin S Xi

Differences in the expression of genes and their splice isoforms across human tissues are fundamental factors to consider for therapeutic target evaluation. To this end, we conducted a transcriptome-wide survey of tissue-specific gene expression and splicing events in the unprecedented collection of 8527 high-quality RNA-seq samples from the GTEx project, covering 36 human peripheral tissues and 13 brain subregions. We derived a weighted tissue-specificity scoring scheme accounting for the similarity of related tissues and inherent variability across individual samples. We showed that ~50.6% of all annotated human genes show tissue-specific expression, including many low abundance transcripts vastly underestimated by previous array-based expression atlases. As utilities for drug discovery, we demonstrated that tissue-specificity is a highly desirable attribute of validated drug targets and tissue-specificity can be used to prioritize disease-associated genes from genome-wide association studies (GWAS). Using brain striatum-specific gene expression as an example, we provided a template to leverage tissue-specific gene expression to identify novel therapeutic targets. Mining of tissue-specific splicing further reveals new opportunities for tissue-specific targeting. Thus, the high quality transcriptome atlas provided by the GTEx is an invaluable resource for drug discovery and systematic analysis anchored on the human tissue specific gene expression provides a promising avenue to identify novel therapeutic target hypotheses.


bioRxiv | 2017

Modified penetrance of coding variants by cis-regulatory variation shapes human traits

Stephane E. Castel; Alejandra Cervera; Pejman Mohammadi; François Aguet; Ferran Reverter; Aaron Wolman; Roderic Guigó; Ana Vasileva; Tuuli Lappalainen

Coding variants represent many of the strongest associations between genotype and phenotype, however they exhibit inter-individual differences in effect, known as variable penetrance. In this work, we study how cis-regulatory variation modifies the penetrance of coding variants in their target gene. Using functional genomic and genetic data from GTEx, we observed that in the general population, purifying selection has depleted haplotype combinations that lead to higher penetrance of pathogenic coding variants. Conversely, in cancer and autism patients, we observed an enrichment of haplotype combinations that lead to higher penetrance of pathogenic coding variants in disease implicated genes, which provides direct evidence that regulatory haplotype configuration of causal coding variants affects disease risk. Finally, we experimentally demonstrated that a regulatory variant can modify the penetrance of a coding variant by introducing a Mendelian SNP using CRISPR/Cas9 on distinct expression haplotypes and using the transcriptome as a phenotypic readout. Our results demonstrate that joint effects of regulatory and coding variants are an important part of the genetic architecture of human traits, and contribute to modified penetrance of disease-causing variants.

Collaboration


Dive into the François Aguet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aviv Regev

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pejman Mohammadi

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge