Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin Ardlie is active.

Publication


Featured researches published by Kristin Ardlie.


Science | 2007

Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels

Richa Saxena; Benjamin F. Voight; Valeriya Lyssenko; Noël P. Burtt; Paul I. W. de Bakker; Hong Chen; Jeffrey J. Roix; Sekar Kathiresan; Joel N. Hirschhorn; Mark J. Daly; Thomas Edward Hughes; Leif Groop; David Altshuler; Peter Almgren; Jose C. Florez; Joanne M. Meyer; Kristin Ardlie; Kristina Bengtsson Boström; Bo Isomaa; Guillaume Lettre; Ulf Lindblad; Helen N. Lyon; Olle Melander; Christopher Newton-Cheh; Peter Nilsson; Marju Orho-Melander; Lennart Råstam; Elizabeth K. Speliotes; Marja-Riitta Taskinen; Tiinamaija Tuomi

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D—in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1—and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.


Nature Genetics | 1999

Characterization of single-nucleotide polymorphisms in coding regions of human genes

Michele Cargill; David Altshuler; James S. Ireland; Pamela Sklar; Kristin Ardlie; Nila Patil; Charles R. Lane; Esther P. Lim; Nilesh Kalyanaraman; James Nemesh; Liuda Ziaugra; Lisa Friedland; Alex Rolfe; Janet A. Warrington; Robert J. Lipshutz; George Q. Daley; Eric S. Lander

Nature Genet. 14, 415– 420 (1996). Due to a cloning error, the sequence reported for ING1 was incorrect. The error appears to have been a result of a compression introducing a frameshift and of the ING1 gene encoding several differentially spliced isoforms that contain a common 3′ exon, one of whichis of a size very similar to that reported in the publication above.


Nature Genetics | 2008

Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes

Eleftheria Zeggini; Laura J. Scott; Richa Saxena; Benjamin F. Voight; Jonathan Marchini; Tianle Hu; Paul I. W. de Bakker; Gonçalo R. Abecasis; Peter Almgren; Gitte Andersen; Kristin Ardlie; Kristina Bengtsson Boström; Richard N. Bergman; Lori L. Bonnycastle; Knut Borch-Johnsen; Noël P. Burtt; Hong Chen; Peter S. Chines; Mark J. Daly; Parimal Deodhar; Chia-Jen Ding; Alex S. F. Doney; William L. Duren; Katherine S. Elliott; Michael R. Erdos; Timothy M. Frayling; Rachel M. Freathy; Lauren Gianniny; Harald Grallert; Niels Grarup

Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and ∼2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 × 10−14), CDC123-CAMK1D (P = 1.2 × 10−10), TSPAN8-LGR5 (P = 1.1 × 10−9), THADA (P = 1.1 × 10−9), ADAMTS9 (P = 1.2 × 10−8) and NOTCH2 (P = 4.1 × 10−8) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.


Nature Genetics | 2012

Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer

Christopher E. Barbieri; Sylvan C. Baca; Michael S. Lawrence; Francesca Demichelis; Mirjam Blattner; Jean Philippe Theurillat; Thomas A. White; Petar Stojanov; Eliezer M. Van Allen; Nicolas Stransky; Elizabeth Nickerson; Sung Suk Chae; Gunther Boysen; Daniel Auclair; Robert C. Onofrio; Kyung Park; Naoki Kitabayashi; Theresa Y. MacDonald; Karen Sheikh; Terry Vuong; Candace Guiducci; Kristian Cibulskis; Andrey Sivachenko; Scott L. Carter; Gordon Saksena; Douglas Voet; Wasay M. Hussain; Alex H. Ramos; Wendy Winckler; Michelle C. Redman

Prostate cancer is the second most common cancer in men worldwide and causes over 250,000 deaths each year. Overtreatment of indolent disease also results in significant morbidity. Common genetic alterations in prostate cancer include losses of NKX3.1 (8p21) and PTEN (10q23), gains of AR (the androgen receptor gene) and fusion of ETS family transcription factor genes with androgen-responsive promoters. Recurrent somatic base-pair substitutions are believed to be less contributory in prostate tumorigenesis but have not been systematically analyzed in large cohorts. Here, we sequenced the exomes of 112 prostate tumor and normal tissue pairs. New recurrent mutations were identified in multiple genes, including MED12 and FOXA1. SPOP was the most frequently mutated gene, with mutations involving the SPOP substrate-binding cleft in 6–15% of tumors across multiple independent cohorts. Prostate cancers with mutant SPOP lacked ETS family gene rearrangements and showed a distinct pattern of genomic alterations. Thus, SPOP mutations may define a new molecular subtype of prostate cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men

Matthew L. Freedman; Christopher A. Haiman; Nick Patterson; Gavin J. McDonald; Arti Tandon; Alicja Waliszewska; Kathryn L. Penney; Robert Steen; Kristin Ardlie; Esther M. John; Ingrid Oakley-Girvan; Alice S. Whittemore; Kathleen A. Cooney; Sue A. Ingles; David Altshuler; Brian E. Henderson; David Reich

A whole-genome admixture scan in 1,597 African Americans identified a 3.8 Mb interval on chromosome 8q24 as significantly associated with susceptibility to prostate cancer [logarithm of odds (LOD) = 7.1]. The increased risk because of inheriting African ancestry is greater in men diagnosed before 72 years of age (P < 0.00032) and may contribute to the epidemiological observation that the higher risk for prostate cancer in African Americans is greatest in younger men (and attenuates with older age). The same region was recently identified through linkage analysis of prostate cancer, followed by fine-mapping. We strongly replicated this association (P < 4.2 × 10−9) but find that the previously described alleles do not explain more than a fraction of the admixture signal. Thus, admixture mapping indicates a major, still-unidentified risk gene for prostate cancer at 8q24, motivating intense work to find it.


Nature Genetics | 2000

Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse

Kerstin Lindblad-Toh; Ellen Winchester; Mark J. Daly; David G. Wang; Joel N. Hirschhorn; Jean-Philippe Laviolette; Kristin Ardlie; David Reich; Elizabeth Robinson; Pamela Sklar; Nila Shah; Daryl J. Thomas; Jian-Bing Fan; Thomas R. Gingeras; Janet A. Warrington; Nila Patil; Thomas J. Hudson; Eric S. Lander

Single-nucleotide polymorphisms (SNPs) have been the focus of much attention in human genetics because they are extremely abundant and well-suited for automated large-scale genotyping. Human SNPs, however, are less informative than other types of genetic markers (such as simple-sequence length polymorphisms or microsatellites) and thus more loci are required for mapping traits. SNPs offer similar advantages for experimental genetic organisms such as the mouse, but they entail no loss of informativeness because bi-allelic markers are fully informative in analysing crosses between inbred strains. Here we report a large-scale analysis of SNPs in the mouse genome. We characterized the rate of nucleotide polymorphism in eight mouse strains and identified a collection of 2,848 SNPs located in 1,755 sequence-tagged sites (STSs) using high-density oligonucleotide arrays. Three-quarters of these SNPs have been mapped on the mouse genome, providing a first-generation SNP map of the mouse. We have also developed a multiplex genotyping procedure by which a genome scan can be performed with only six genotyping reactions per animal.


Journal of Clinical Oncology | 2012

RAS Mutations Are Associated With the Development of Cutaneous Squamous Cell Tumors in Patients Treated With RAF Inhibitors

Patrick A. Oberholzer; Damien Kee; Piotr Dziunycz; Antje Sucker; Nyam Kamsu-Kom; Robert Jones; Christine Roden; Clinton J. Chalk; Kristin Ardlie; Emanuele Palescandolo; Adriano Piris; Laura E. MacConaill; Caroline Robert; Günther F.L. Hofbauer; Grant A. McArthur; Dirk Schadendorf; Levi A. Garraway

PURPOSE RAF inhibitors are effective against melanomas with BRAF V600E mutations but may induce keratoacanthomas (KAs) and cutaneous squamous cell carcinomas (cSCCs). The potential of these agents to promote secondary malignancies is concerning. We analyzed cSCC and KA lesions for genetic mutations in an attempt to identify an underlying mechanism for their formation. METHODS Four international centers contributed 237 KA or cSCC tumor samples from patients receiving an RAF inhibitor (either vemurafenib or sorafenib; n = 19) or immunosuppression therapy (n = 53) or tumors that developed spontaneously (n = 165). Each sample was profiled for 396 known somatic mutations across 33 cancer-related genes by using a mass spectrometric-based genotyping platform. RESULTS Mutations were detected in 16% of tumors (38 of 237), with five tumors harboring two mutations. Mutations in TP53, CDKN2A, HRAS, KRAS, and PIK3CA were previously described in squamous cell tumors. Mutations in MYC, FGFR3, and VHL were identified for the first time. A higher frequency of activating RAS mutations was found in tumors from patients treated with an RAF inhibitor versus populations treated with a non-RAF inhibitor (21.1% v 3.2%; P < .01), although overall mutation rates between treatment groups were similar (RAF inhibitor, 21.1%; immunosuppression, 18.9%; and spontaneous, 17.6%; P = not significant). Tumor histology (KA v cSCC), tumor site (head and neck v other), patient age (≤ 70 v > 70 years), and sex had no significant impact on mutation rate or type. CONCLUSION Squamous cell tumors from patients treated with an RAF inhibitor have a distinct mutational profile that supports a mechanism of therapy-induced tumorigenesis in RAS-primed cells. Conceivably, cotargeting of MEK together with RAF may reduce or prevent formation of these tumors.


Nature Genetics | 2005

A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility

David Reich; Nick Patterson; Philip L. De Jager; Gavin J. McDonald; Alicja Waliszewska; Arti Tandon; Robin Lincoln; Cari DeLoa; Scott A. Fruhan; Philippe Cabre; Odile Bera; Gilbert Semana; M. Ann Kelly; David A. Francis; Kristin Ardlie; Omar Khan; Bruce Anthony Campbell Cree; Stephen L. Hauser; Jorge R. Oksenberg; David A. Hafler

Multiple sclerosis is a common disease with proven heritability, but, despite large-scale attempts, no underlying risk genes have been identified. Traditional linkage scans have so far identified only one risk haplotype for multiple sclerosis (at HLA on chromosome 6), which explains only a fraction of the increased risk to siblings. Association scans such as admixture mapping have much more power, in principle, to find the weak factors that must explain most of the disease risk. We describe here the first high-powered admixture scan, focusing on 605 African American cases and 1,043 African American controls, and report a locus on chromosome 1 that is significantly associated with multiple sclerosis.


American Journal of Human Genetics | 2001

Lower-Than-Expected Linkage Disequilibrium between Tightly Linked Markers in Humans Suggests a Role for Gene Conversion

Kristin Ardlie; Shau Neen Liu-Cordero; Michael A. Eberle; Mark J. Daly; Jeffrey C. Barrett; Ellen Winchester; Eric S. Lander

Understanding the pattern of linkage disequilibrium (LD) in the human genome is important both for successful implementation of disease-gene mapping approaches and for inferences about human demographic histories. Previous studies have examined LD between loci within single genes or confined genomic regions, which may not be representative of the genome; between loci separated by large distances, where little LD is seen; or in population groups that differ from one study to the next. We measured LD in a large set of locus pairs distributed throughout the genome, with loci within each pair separated by short distances (average 124 bp). Given current models of the history of the human population, nearly all pairs of loci at such short distances would be expected to show complete LD as a consequence of lack of recombination in the short interval. Contrary to this expectation, a significant fraction of pairs showed incomplete LD. A standard model of recombination applied to these data leads to an estimate of effective human population size of 110,000. This estimate is an order of magnitude higher than most estimates based on nucleotide diversity. The most likely explanation of this discrepancy is that gene conversion increases the apparent rate of recombination between nearby loci.


PLOS Genetics | 2009

Admixture mapping of 15,280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X.

Ching-Yu Cheng; W.H. Linda Kao; Nick Patterson; Arti Tandon; Christopher A. Haiman; Tamara B. Harris; Chao Xing; Esther M. John; Christine B. Ambrosone; Frederick L. Brancati; Josef Coresh; Michael F. Press; Rulan S. Parekh; Michael J. Klag; Lucy A. Meoni; Wen Chi Hsueh; Laura Fejerman; Ludmila Pawlikowska; Matthew L. Freedman; Lina Jandorf; Elisa V. Bandera; Gregory Ciupak; Michael A. Nalls; Ermeg L. Akylbekova; Eric S. Orwoll; Tennille S. Leak; Iva Miljkovic; Rongling Li; Giske Ursin; Leslie Bernstein

The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI.

Collaboration


Dive into the Kristin Ardlie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Haiman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge