Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Binet is active.

Publication


Featured researches published by François Binet.


Blood | 2011

Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A

Jean-Sebastien Joyal; Nicholas Sitaras; François Binet; José Carlos Rivera; Andreas Stahl; Karine Zaniolo; Zhuo Shao; Anna Polosa; Tang Zhu; David Hamel; Mikheil Djavari; Dario Kunik; Jean-Claude Honoré; Emilie Picard; Alexandra Zabeida; Daya R. Varma; Gilles R.X. Hickson; Joseph A. Mancini; Michael Klagsbrun; Santiago Costantino; Christian M. Beauséjour; Pierre Lachapelle; Lois E. H. Smith; Sylvain Chemtob; Przemyslaw Sapieha

The failure of blood vessels to revascularize ischemic neural tissue represents a significant challenge for vascular biology. Examples include proliferative retinopathies (PRs) such as retinopathy of prematurity and proliferative diabetic retinopathy, which are the leading causes of blindness in children and working-age adults. PRs are characterized by initial microvascular degeneration, followed by a compensatory albeit pathologic hypervascularization mounted by the hypoxic retina attempting to reinstate metabolic equilibrium. Paradoxically, this secondary revascularization fails to grow into the most ischemic regions of the retina. Instead, the new vessels are misdirected toward the vitreous, suggesting that vasorepulsive forces operate in the avascular hypoxic retina. In the present study, we demonstrate that the neuronal guidance cue semaphorin 3A (Sema3A) is secreted by hypoxic neurons in the avascular retina in response to the proinflammatory cytokine IL-1β. Sema3A contributes to vascular decay and later forms a chemical barrier that repels neo-vessels toward the vitreous. Conversely, silencing Sema3A expression enhances normal vascular regeneration within the ischemic retina, thereby diminishing aberrant neovascularization and preserving neuroretinal function. Overcoming the chemical barrier (Sema3A) released by ischemic neurons accelerates the vascular regeneration of neural tissues, which restores metabolic supply and improves retinal function. Our findings may be applicable to other neurovascular ischemic conditions such as stroke.


Cell Metabolism | 2013

Neuron-Derived Semaphorin 3A Is an Early Inducer of Vascular Permeability in Diabetic Retinopathy via Neuropilin-1

Agustin Cerani; Nicolas Tetreault; Catherine Ménard; Eric Lapalme; Chintan Patel; Nicholas Sitaras; Felix Beaudoin; Dominique Leboeuf; Vincent De Guire; François Binet; Agnieszka Dejda; Flavio Rezende; Khalil Miloudi; Przemyslaw Sapieha

The deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function. We demonstrate, by a series of orthogonal approaches, that neutralization of semaphorin 3A efficiently prevents diabetes-induced retinal vascular leakage in a stage of the disease when vascular endothelial growth factor neutralization is inefficient. These observations were corroborated in Tg(Cre-Esr1)/Nrp1(flox/flox) conditional knockout mice. Our findings identify a therapeutic target for macular edema and provide further evidence for neurovascular crosstalk in the pathogenesis of DR.


Blood | 2015

Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans.

Sara Massena; Gustaf Christoffersson; Evelina Vågesjö; Cedric Seignez; Karin Gustafsson; François Binet; Carmen Herrera Hidalgo; Antoine Giraud; Jalal Lomei; Simone Weström; Masabumi Shibuya; Lena Claesson-Welsh; Pär Gerwins; Michael A. Welsh; Johan Kreuger; Mia Phillipson

Vascular endothelial growth factor A (VEGF-A) is upregulated during hypoxia and is the major regulator of angiogenesis. VEGF-A expression has also been found to recruit myeloid cells to ischemic tissues where they contribute to angiogenesis. This study investigates the mechanisms underlying neutrophil recruitment to VEGF-A as well as the characteristics of these neutrophils. A previously undefined circulating subset of neutrophils shown to be CD49d(+)VEGFR1(high)CXCR4(high) was identified in mice and humans. By using chimeric mice with impaired VEGF receptor 1 (VEGFR1) or VEGFR2 signaling (Flt-1tk(-/-), tsad(-/-)), we found that parallel activation of VEGFR1 on neutrophils and VEGFR2 on endothelial cells was required for VEGF-A-induced recruitment of circulating neutrophils to tissue. Intravital microscopy of mouse microcirculation revealed that neutrophil recruitment by VEGF-A versus by the chemokine macrophage inflammatory protein 2 (MIP-2 [CXCL2]) involved the same steps of the recruitment cascade but that an additional neutrophil integrin (eg, VLA-4 [CD49d/CD29]) played a crucial role in neutrophil crawling and emigration to VEGF-A. Isolated CD49d(+) neutrophils featured increased chemokinesis but not chemotaxis compared with CD49d(-) neutrophils in the presence of VEGF-A. Finally, by targeting the integrin α4 subunit (CD49d) in a transplantation-based angiogenesis model that used avascular pancreatic islets transplanted to striated muscle, we demonstrated that inhibiting the recruitment of circulating proangiogenic neutrophils to hypoxic tissue impairs vessel neoformation. Thus, angiogenesis can be modulated by targeting cell-surface receptors specifically involved in VEGF-A-dependent recruitment of proangiogenic neutrophils without compromising recruitment of the neutrophil population involved in the immune response to pathogens.


Cell Metabolism | 2013

Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1α degradation of netrin-1.

François Binet; Gaelle Mawambo; Nicholas Sitaras; Nicolas Tetreault; Eric Lapalme; Sandra Favret; Agustin Cerani; Dominique Leboeuf; Sophie Tremblay; Flavio Rezende; Aimee M. Juan; Andreas Stahl; Jean-Sebastien Joyal; Eric Milot; Randal J. Kaufman; Martin Guimond; Timothy E. Kennedy; Przemyslaw Sapieha

In stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide evidence that the failure of reparative angiogenesis is temporally and spatially associated with endoplasmic reticulum (ER) stress. The canonical ER stress pathways of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme-1α (IRE1α) are activated within hypoxic/ischemic retinal ganglion neurons, initiating a cascade that results in angiostatic signals. Our findings demonstrate that the endoribonuclease IRE1α degrades the classical guidance cue netrin-1. This neuron-derived cue triggers a critical reparative-angiogenic switch in neural macrophage/microglial cells. Degradation of netrin-1, by persistent neuronal ER stress, thereby hinders vascular regeneration. These data identify a neuronal-immune mechanism that directly regulates reparative angiogenesis.


Cell Metabolism | 2015

ER Stress and Angiogenesis

François Binet; Przemyslaw Sapieha

Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.


Investigative Ophthalmology & Visual Science | 2013

Systemic Inflammation Perturbs Developmental Retinal Angiogenesis and Neuroretinal Function

Sophie Tremblay; Khalil Miloudi; Samaneh Chaychi; Sandra Favret; François Binet; Anna Polosa; Pierre Lachapelle; Sylvain Chemtob; Przemyslaw Sapieha

PURPOSE Perinatal inflammatory stress in preterm babies is associated with increased rates of severe retinopathy of prematurity (ROP) and adverse neurological dysfunction. In this study, we set out to determine the consequences of severe systemic inflammatory stress on developmental retinal vascularization and evaluate the subsequent outcome on retinal function in later life. METHODS Systemic inflammatory stress was induced in C57BL/6J mouse pups by an intraperitoneal injection of lipopolysaccharide (LPS; 1 mg/kg) at postnatal day 4. In response to LPS, retinal inflammation was confirmed by quantitative RT-PCR analysis of diverse inflammatory markers. A detailed and systematic analysis of retinal microglial infiltration, retinal vascular morphology, density, and growth rate was performed at key time points throughout retinal vascularization. Retinal function in adult life was assessed by using electroretinography at 6 weeks postinjection. RESULTS As early as 48 hours after intraperitoneal administration of LPS, a significant increase in retinal vascular density was noted throughout the retina. A pronounced increase in the number of activated microglial cell was observed in the retinal ganglion cell layer and in the outer plexiform layer just prior to their vascularization; direct physical contact between activated microglia and sprouting vessels suggested that microglia partake in promoting the aberrant retinal vascularization. With maturity, animals subjected to perinatal inflammatory stress displayed depleted retinal vascular beds and had significantly decreased retinal function as determined by electroretinography. CONCLUSIONS Our data reveal that early severe postnatal inflammatory stress leads to abnormal retinal vascular development and increased vessel anastomosis and, ultimately, permanently compromises retinal function. The aberrant and initially exaggerated retinal vascularization observed is associated with microglial activation, providing a cellular mechanism by which perinatal sepsis predisposes to ROP.


Embo Molecular Medicine | 2016

Endoplasmic reticulum stress enhances fibrosis through IRE1α‐mediated degradation of miR‐150 and XBP‐1 splicing

Femke Heindryckx; François Binet; Markella Ponticos; K. Rombouts; Joey Lau; Johan Kreuger; Pär Gerwins

ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress‐induced IRE1α signaling pathway, using the inhibitor 4μ8C, blocks TGFβ‐induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α−/− fibroblasts and expression of IRE1α‐mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR‐150 and thereby to release the suppressive effect that miR‐150 exerted on αSMA expression through c‐Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP‐1‐dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases.


Journal of Clinical Investigation | 2016

Truncated netrin-1 contributes to pathological vascular permeability in diabetic retinopathy

Khalil Miloudi; François Binet; Ariel Wilson; Agustin Cerani; Malika Oubaha; Catherine Ménard; Sullivan Henriques; Gaelle Mawambo; Agnieszka Dejda; Phuong Trang Nguyen; Flavio Rezende; Steve Bourgault; Timothy E. Kennedy; Przemyslaw Sapieha

Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness in the working-age population. Impaired blood-retinal barrier function leads to macular edema that is closely associated with the deterioration of central vision. We previously demonstrated that the neuronal guidance cue netrin-1 activates a program of reparative angiogenesis in microglia within the ischemic retina. Here, we provide evidence in both vitreous humor of diabetic patients and in retina of a murine model of diabetes that netrin-1 is metabolized into a bioactive fragment corresponding to domains VI and V of the full-length molecule. In contrast to the protective effects of full-length netrin-1 on retinal microvasculature, the VI-V fragment promoted vascular permeability through the uncoordinated 5B (UNC5B) receptor. The collagenase matrix metalloprotease 9 (MMP-9), which is increased in patients with diabetic macular edema, was capable of cleaving netrin-1 into the VI-V fragment. Thus, MMP-9 may release netrin-1 fragments from the extracellular matrix and facilitate diffusion. Nonspecific inhibition of collagenases or selective inhibition of MMP-9 decreased pathological vascular permeability in a murine model of diabetic retinal edema. This study reveals that netrin-1 degradation products are capable of modulating vascular permeability, suggesting that these fragments are of potential therapeutic interest for the treatment of DR.


Journal of Visualized Experiments | 2014

Assessment of vascular regeneration in the CNS using the mouse retina.

Khalil Miloudi; Agnieszka Dejda; François Binet; Eric Lapalme; Agustin Cerani; Przemyslaw Sapieha

The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimers, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS.


Aging (Albany NY) | 2013

Deficiency in the metabolite receptor SUCNR1 (GPR91) leads to outer retinal lesions

Sandra Favret; François Binet; Eric Lapalme; Dominique Leboeuf; Jose Carbadillo; Tina Rubic; Emilie Picard; Gaelle Mawambo; Nicolas Tetreault; Jean-Sebastien Joyal; Sylvain Chemtob; Florian Sennlaub; John Paul SanGiovanni; Martin Guimond; Przemyslaw Sapieha

Collaboration


Dive into the François Binet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agustin Cerani

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Eric Lapalme

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Flavio Rezende

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Sandra Favret

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge