Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Collard is active.

Publication


Featured researches published by François Collard.


Biochemical Journal | 2010

Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia

Elsa Wiame; Donatienne Tyteca; Nathalie Pierrot; François Collard; Mustapha Amyere; Gaëtane Noël; Jonathan Desmedt; Marie‑Cécile Nassogne; Miikka Vikkula; Jean-Noël Octave; Marie-Françoise Vincent; Pierre J. Courtoy; Eugen Boltshauser; Emile Van Schaftingen

The brain-specific compound NAA (N-acetylaspartate) occurs almost exclusively in neurons, where its concentration reaches approx. 20 mM. Its abundance is determined in patients by MRS (magnetic resonance spectroscopy) to assess neuronal density and health. The molecular identity of the NAT (N-acetyltransferase) that catalyses NAA synthesis has remained unknown, because the enzyme is membrane-bound and difficult to purify. Database searches indicated that among putative NATs (i.e. proteins homologous with known NATs, but with uncharacterized catalytic activity) encoded by the human and mouse genomes two were almost exclusively expressed in brain, NAT8L and NAT14. Transfection studies in HEK-293T [human embryonic kidney-293 cells expressing the large T-antigen of SV40 (simian virus 40)] indicated that NAT8L, but not NAT14, catalysed the synthesis of NAA from L-aspartate and acetyl-CoA. The specificity of NAT8L, its Km for aspartate and its sensitivity to detergents are similar to those described for brain Asp-NAT. Confocal microscopy analysis of CHO (Chinese-hamster ovary) cells and neurons expressing recombinant NAT8L indicates that it is associated with the ER (endoplasmic reticulum), but not with mitochondria. A mutation search in the NAT8L gene of the only patient known to be deficient in NAA disclosed the presence of a homozygous 19 bp deletion, resulting in a change in reading frame and the absence of production of a functional protein. We conclude that NAT8L, a neuron-specific protein, is responsible for NAA synthesis and is mutated in primary NAA deficiency (hypoacetylaspartia). The molecular identification of this enzyme will lead to new perspectives in the clarification of the function of this most abundant amino acid derivative in neurons and for the diagnosis of hypoacetylaspartia in other patients.


FEBS Letters | 1999

Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway

François Collard; Jean-François Collet; Isabelle Gerin; Maria Veiga-da-Cunha; Emile Van Schaftingen

We report the sequence of a human cDNA encoding a protein homologous to devB (a bacterial gene often found in proximity to the gene encoding glucose‐6‐phosphate dehydrogenase in bacterial genomes) and to the C‐terminal part of human hexose‐6‐phosphate dehydrogenase. The protein was expressed in Escherichia coli, purified and shown to be 6‐phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway. Sequence analysis indicates that bacterial devB proteins, the C‐terminal part of hexose‐6‐phosphate dehydrogenase and yeast Sol1–4 proteins are most likely also 6‐phosphogluconolactonases and that these proteins are related to glucosamine‐6‐phosphate isomerases.


Amino Acids | 2012

Enzymatic repair of amadori products

Emile Van Schaftingen; François Collard; Elsa Wiame; Maria Veiga-da-Cunha

Protein deglycation, a new form of protein repair, involves several enzymes. Fructosamine-3-kinase (FN3K), an enzyme found in mammals and birds, phosphorylates fructosamines on the third carbon of their sugar moiety, making them unstable and causing them to detach from proteins. This enzyme acts particularly well on fructose-epsilon-lysine, both in free form and in the accessible regions of proteins. Mice deficient in FN3K accumulate protein-bound fructosamines and free fructoselysine, indicating that the deglycation mechanism initiated by FN3K is operative in vivo. Mammals and birds also have an enzyme designated ‘FN3K-related protein’ (FN3KRP), which shares ≈65% sequence identity with FN3K. Unlike FN3K, FN3KRP does not phosphorylate fructosamines, but acts on ribulosamines and erythrulosamines. As with FN3K, the third carbon is phosphorylated and this leads to destabilization of the ketoamines. Experiments with intact erythrocytes indicate that FN3KRP is also a protein-repair enzyme. Its physiological substrates are most likely formed from ribose 5-phosphate and erythrose 4-phosphate, which give rise to ketoamine 5- or 4-phosphates. The latter are dephosphorylated by ‘low-molecular-weight protein-tyrosine-phosphatase-A’ (LMW-PTP-A) before FN3KRP transfers a phosphate on the third carbon. The specificity of FN3K homologues present in plants and bacteria is similar to that of mammalian FN3KRP, suggesting that deglycation of ribulosamines and/or erythrulosamines is an ancient mechanism. Mammalian cells contain also a phosphatase acting on fructosamine 6-phosphates, which result from the reaction of proteins with glucose 6-phosphate.


Journal of Inherited Metabolic Disease | 2013

Metabolite proofreading, a neglected aspect of intermediary metabolism.

Emile Van Schaftingen; Alexandre Marbaix; François Collard; Maria Veiga-da-Cunha; Carole L. Linster

Enzymes of intermediary metabolism are less specific than what is usually assumed: they often act on metabolites that are not their ‘true’ substrate, making abnormal metabolites that may be deleterious if they accumulate. Some of these abnormal metabolites are reconverted to normal metabolites by repair enzymes, which play therefore a role akin to the proofreading activities of DNA polymerases and aminoacyl-tRNA synthetases. An illustrative example of such repair enzymes is L-2-hydroxyglutarate dehydrogenase, which eliminates a metabolite abnormally made by a Krebs cycle enzyme. Mutations in L-2-hydroxyglutarate dehydrogenase lead to L-2-hydroxyglutaric aciduria, a leukoencephalopathy. Other examples are the epimerase and the ATP-dependent dehydratase that repair hydrated forms of NADH and NADPH; ethylmalonyl-CoA decarboxylase, which eliminates an abnormal metabolite formed by acetyl-CoA carboxylase, an enzyme of fatty acid synthesis; L-pipecolate oxidase, which repairs a metabolite formed by a side activity of an enzyme of L-proline biosynthesis. Metabolite proofreading enzymes are likely quite common, but most of them are still unidentified. A defect in these enzymes may account for new metabolic disorders.


Journal of the American Chemical Society | 2011

Oxygen reactivity in flavoenzymes: context matters.

Claudia A. McDonald; Rebecca L. Fagan; François Collard; Vincent M. Monnier; Bruce A. Palfey

Many flavoenzymes--oxidases and monooxygenases--react faster with oxygen than free flavins do. There are many ideas on how enzymes cause this. Recent work has focused on the importance of a positive charge near N5 of the reduced flavin. Fructosamine oxidase has a lysine near N5 of its flavin. We measured a rate constant of 1.6 × 10(5) M(-1) s(-1) for its reaction with oxygen. The Lys276Met mutant reacted with a rate constant of 291 M(-1) s(-1), suggesting an important role for this lysine in oxygen activation. The dihydroorotate dehydrogenases from E. coli and L. lactis also have a lysine near N5 of the flavin. They react with O(2) with rate constants of 6.2 × 10(4) and 3.0 × 10(3) M(-1) s(-1), respectively. The Lys66Met and Lys43Met mutant enzymes react with rate constants that are nearly the same as those for the wild-type enzymes, demonstrating that simply placing a positive charge near N5 of the flavin does not guarantee increased oxygen reactivity. Our results show that the lysine near N5 does not exert an effect without an appropriate context; evolution did not find only one mechanism for activating the reaction of flavins with O(2).


Journal of Biological Chemistry | 2010

Molecular identification of N-acetylaspartylglutamate synthase and beta-citrylglutamate synthase.

François Collard; Vincent Stroobant; Pedro Lamosa; Coco N. Kapanda; Didier M. Lambert; Giulio G. Muccioli; Jacques H. Poupaert; Fred R. Opperdoes; Emile Van Schaftingen

The purpose of the present work was to determine the identity of the enzymes that synthesize N-acetylaspartylglutamate (NAAG), the most abundant dipeptide present in vertebrate central nervous system (CNS), and β-citrylglutamate, a structural analogue of NAAG present in testis and immature brain. Previous evidence suggests that NAAG is not synthesized on ribosomes but presumably is synthesized by a ligase. As attempts to detect this ligase in brain extracts failed, we searched the mammalian genomes for putative enzymes that could catalyze this type of reaction. Mammalian genomes were found to encode two putative ligases homologous to Escherichia coli RIMK, which ligates glutamates to the C terminus of ribosomal protein S6. One of them, named RIMKLA, is almost exclusively expressed in the CNS, whereas RIMKLB, which shares 65% sequence identity with RIMKLA, is expressed in CNS and testis. Both proteins were expressed in bacteria or HEK293T cells and purified. RIMKLA catalyzed the ATP-dependent synthesis of N-acetylaspartylglutamate from N-acetylaspartate and l-glutamate. RIMKLB catalyzed this reaction as well as the synthesis of β-citrylglutamate. The nature of the reaction products was confirmed by mass spectrometry and NMR. RIMKLA was shown to produce stoichiometric amounts of NAAG and ADP, in agreement with its belonging to the ATP-grasp family of ligases. The molecular identification of these two enzymes will facilitate progress in the understanding of the function of NAAG and β-citrylglutamate.


Biochemical Journal | 2004

Fructosamine 3-kinase-related protein and deglycation in human erythrocytes.

François Collard; Elsa Wiame; Niki Bergans; Juliette Fortpied; Didier Vertommen; Florent Vanstapel; Ghislain Delpierre; Emile Van Schaftingen

Fructosamine 3-kinase (FN3K), an enzyme initially identified in erythrocytes, catalyses the phosphorylation of fructosamines on their third carbon, leading to their destabilization and their removal from protein. We show that human erythrocytes also contain FN3K-related protein (FN3K-RP), an enzyme that phosphorylates psicosamines and ribulosamines, but not fructosamines, on the third carbon of their sugar moiety. Protein-bound psicosamine 3-phosphates and ribulosamine 3-phosphates are unstable, decomposing at pH 7.1 and 37 degrees C with half-lives of 8.8 h and 25 min respectively, as compared with 7 h for fructosamine 3-phosphates. NMR analysis indicated that 1-deoxy-1-morpholinopsicose (DMP, a substrate for FN3K and FN3K-RP), like 1-deoxy-1-morpholinofructose (DMF, a substrate of FN3K), penetrated erythrocytes and was converted into the corresponding 3-phospho-derivative. Incubation of erythrocytes with 50 mM allose, 200 mM glucose or 10 mM ribose for 24 h resulted in the accumulation of glycated haemoglobin, and this accumulation was approx. 1.9-2.6-fold higher if DMP, a competitive inhibitor of both FN3K and FN3K-RP, was present in the incubation medium. Incubation with 50 mM allose or 200 mM glucose also caused the accumulation of ketoamine 3-phosphates, which was inhibited by DMP. By contrast, DMF, a specific inhibitor of FN3K, only affected the glucose-dependent accumulation of glycated haemoglobin and ketoamine 3-phosphates. These data indicate that FN3K-RP can phosphorylate intracellular, protein-bound psicosamines and ribulosamines, thus leading to deglycation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella

Thibault Barbier; François Collard; Amaia Zúñiga-Ripa; Ignacio Moriyón; Thibault Godard; Judith Becker; Christoph Wittmann; Emile Van Schaftingen; Jean-Jacques Letesson

Significance Erythritol is a preferential substrate for Brucella, a common zoonotic bacterial pathogen. This four-carbon polyol is found in the reproductive organs of several affected species, a feature that may account for the characteristic viscerotropism of Brucella that leads to sterility and abortion. Although described previously as feeding glycolysis via dihydroxyacetone-phosphate, we show here that erythritol is actually converted into D-erythrose-4-phosphate through a hitherto undescribed set of reactions that involves three isomerases and that allows hexose-monophosphate synthesis and growth by feeding the pentose phosphate shunt. Elucidation of this unique carbohydrate pathway, which also applies to the Rhizobiales plant endosymbionts, opens the way for further research on the metabolic adaptation of an important facultative intracellular pathogen to target organs. Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of erythritol by Brucella and its role in pathogenicity.


Journal of Biological Chemistry | 2011

Molecular identification of β-citrylglutamate hydrolase as glutamate carboxypeptidase 3.

François Collard; Didier Vertommen; Stefan N. Constantinescu; Lievin Buts; Emile Van Schaftingen

β-Citrylglutamate (BCG), a compound present in adult testis and in the CNS during the pre- and perinatal periods is synthesized by an intracellular enzyme encoded by the RIMKLB gene and hydrolyzed by an as yet unidentified ectoenzyme. To identify β-citrylglutamate hydrolase, this enzyme was partially purified from mouse testis and characterized. Interestingly, in the presence of Ca2+, the purified enzyme specifically hydrolyzed β-citrylglutamate and did not act on N-acetyl-aspartylglutamate (NAAG). However, both compounds were hydrolyzed in the presence of Mn2+. This behavior and the fact that the enzyme was glycosylated and membrane-bound suggested that β-citrylglutamate hydrolase belonged to the same family of protein as glutamate carboxypeptidase 2 (GCP2), the enzyme that catalyzes the hydrolysis of N-acetyl-aspartylglutamate. The mouse tissue distribution of β-citrylglutamate hydrolase was strikingly similar to that of the glutamate carboxypeptidase 3 (GCP3) mRNA, but not that of the GCP2 mRNA. Furthermore, similarly to β-citrylglutamate hydrolase purified from testis, recombinant GCP3 specifically hydrolyzed β-citrylglutamate in the presence of Ca2+, and acted on both N-acetyl-aspartylglutamate and β-citrylglutamate in the presence of Mn2+, whereas recombinant GCP2 only hydrolyzed N-acetyl-aspartylglutamate and this, in a metal-independent manner. A comparison of the structures of the catalytic sites of GCP2 and GCP3, as well as mutagenesis experiments revealed that a single amino acid substitution (Asn-519 in GCP2, Ser-509 in GCP3) is largely responsible for GCP3 being able to hydrolyze β-citrylglutamate. Based on the crystal structure of GCP3 and kinetic analysis, we propose that GCP3 forms a labile catalytic Zn-Ca cluster that is critical for its β-citrylglutamate hydrolase activity.


Diabetes | 2000

Identification, cloning, and heterologous expression of a mammalian fructosamine-3-kinase

Ghislain Delpierre; Mark H. Rider; François Collard; Vincent Stroobant; Florent Vanstapel; Helena Santos; Emile Van Schaftingen

Collaboration


Dive into the François Collard's collaboration.

Top Co-Authors

Avatar

Emile Van Schaftingen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Ghislain Delpierre

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Maria Veiga-da-Cunha

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Didier Vertommen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Elsa Wiame

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Juliette Fortpied

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Vincent Stroobant

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Florent Vanstapel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gaëtane Noël

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge