Ghislain Delpierre
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ghislain Delpierre.
Journal of Biological Chemistry | 1998
Jean-François Collet; Vincent Stroobant; Michel Pirard; Ghislain Delpierre; Emile Van Schaftingen
When incubated with their substrates, human phosphomannomutase and l-3-phosphoserine phosphatase are known to form phosphoenzymes with chemical characteristics of an acyl-phosphate. The phosphorylated residue in phosphomannomutase has now been identified by mass spectrometry after reduction of the phosphoenzyme with tritiated borohydride and trypsin digestion. It is the first aspartate in a conserved DVDGT motif. Replacement of either aspartate of this motif by asparagine or glutamate resulted in complete inactivation of the enzyme. The same mutations performed in the DXDST motif of l-3-phosphoserine phosphatase also resulted in complete inactivation of the enzyme, except for the replacement of the second aspartate by glutamate, which reduced the activity by only about 40%. This suggests that the first aspartate of the motif is also the phosphorylated residue inl-3-phosphoserine phosphatase. Data banks contained seven other phosphomutases or phosphatases sharing a similar, totally conserved DXDX(T/V) motif at their amino terminus. One of these (β-phosphoglucomutase) is shown to form a phosphoenzyme with the characteristics of an acyl-phosphate. In conclusion, phosphomannomutase and l-3-phosphoserine phosphatase belong to a new phosphotransferase family with an amino-terminal DXDX(T/V) motif that serves as an intermediate phosphoryl acceptor.
Biochemical Journal | 2006
Maria Veiga da-Cunha; Patrick Jacquemin; Ghislain Delpierre; Catherine Godfraind; Ivan Théate; Didier Vertommen; Frédéric Clotman; Frédéric P. Lemaigre; Olivier Devuyst; Emile Van Schaftingen
Amines, including those present on proteins, spontaneously react with glucose to form fructosamines in a reaction known as glycation. In the present paper, we have explored, through a targeted gene inactivation approach, the role of FN3K (fructosamine 3-kinase), an intracellular enzyme that phosphorylates free and protein-bound fructose-epsilon-lysines and which is potentially involved in protein repair. Fn3k-/- mice looked healthy and had normal blood glucose and serum fructosamine levels. However, their level of haemoglobin-bound fructosamines was approx. 2.5-fold higher than that of control (Fn3k+/+) or Fn3k+/- mice. Other intracellular proteins were also significantly more glycated in Fn3k-/- mice in erythrocytes (1.8-2.2-fold) and in brain, kidney, liver and skeletal muscle (1.2-1.8-fold), indicating that FN3K removes fructosamines from intracellular proteins in vivo. The urinary excretion of free fructose-epsilon-lysine was 10-20-fold higher in fed mice compared with mice starved for 36 h, and did not differ between fed Fn3k+/+ and Fn3k-/- mice, indicating that food is the main source of urinary fructose-epsilon-lysine in these mice and that FN3K does not participate in the metabolism of food-derived fructose-epsilon-lysine. However, in starved animals, the urinary excretion of fructose-epsilon-lysine was 2.5-fold higher in Fn3k-/- mice compared with Fn3k+/+ or Fn3k+/- mice. Furthermore, a marked increase (5-13-fold) was observed in the concentration of free fructose-epsilon-lysine in tissues of fed Fn3k-/- mice compared with control mice, indicating that FN3K participates in the metabolism of endogenously produced fructose-epsilon-lysine. Taken together, these data indicate that FN3K serves as a protein repair enzyme and also in the metabolism of endogenously produced free fructose-epsilon-lysine.
Diabetes & Metabolism | 2006
Ghislain Delpierre; Maria Veiga-da-Cunha; Didier Vertommen; Martin Buysschaert; E Van Schaftingen
BACKGROUND Part of the fructosamines that are bound to intracellular proteins are repaired by fructosamine 3-kinase (FN3K). Because subject-to-subject variations in erythrocyte FN3K activity could affect the level of glycated haemoglobin independently of differences in blood glucose level, we explored if such variability existed, if it was genetically determined by the FN3K locus on 17q25 and if the FN3K activity correlated inversely with the level of glycated haemoglobin. RESULTS The mean erythrocyte FN3K activity did not differ between normoglycaemic subjects (n = 26) and type 1 diabetic patients (n = 31), but there was a wide interindividual variability in both groups (from about 1 to 4 mU/g haemoglobin). This variability was stable with time and associated (P < 0.0001) with two single nucleotide polymorphisms in the promoter region and exon 6 of the FN3K gene. There was no significant correlation between FN3K activity and the levels of HbA1c, total glycated haemoglobin (GHb) and haemoglobin fructoselysine residues, either in the normoglycaemic or diabetic group. However, detailed analysis of the glycation level at various sites in haemoglobin indicated that the glycation level of Lys-B-144 was about twice as high in normoglycaemic subjects with the lowest FN3K activities as compared to those with the highest FN3K activities. CONCLUSION Interindividual variability of FN3K activity is substantial and impacts on the glycation level at specific sites of haemoglobin, but does not detectably affect the level of HbA1c or GHb. As FN3K opposes one of the chemical effects of hyperglycaemia, it would be of interest to test whether hypoactivity of this enzyme favours the development of diabetic complications.
FEBS Letters | 2004
Elsa Wiame; Armelle Duquenne; Ghislain Delpierre; Emile Van Schaftingen
We have characterized the Bacillus subtilis homologs of fructoselysine 6‐kinase and fructoselysine‐6‐phosphate deglycase, two enzymes that specifically metabolize the Amadori compound fructose‐ε‐lysine in Escherichia coli. The B. subtilis enzymes also catalyzed the phosphorylation of fructosamines to fructosamine 6‐phosphates (YurL) and the conversion of the latter to glucose 6‐phosphate and a free amino acid (YurP). However, their specificity was totally different from that of the E. coli enzymes, since they acted on fructoseglycine, fructosevaline (YurL) or their 6‐phosphoderivatives (YurP) with more than 30‐fold higher catalytic efficiencies than on fructose‐ε‐lysine (6‐phosphate). These enzymes are therefore involved in the metabolism of α‐glycated amino acids.
Biochemical Journal | 2004
François Collard; Elsa Wiame; Niki Bergans; Juliette Fortpied; Didier Vertommen; Florent Vanstapel; Ghislain Delpierre; Emile Van Schaftingen
Fructosamine 3-kinase (FN3K), an enzyme initially identified in erythrocytes, catalyses the phosphorylation of fructosamines on their third carbon, leading to their destabilization and their removal from protein. We show that human erythrocytes also contain FN3K-related protein (FN3K-RP), an enzyme that phosphorylates psicosamines and ribulosamines, but not fructosamines, on the third carbon of their sugar moiety. Protein-bound psicosamine 3-phosphates and ribulosamine 3-phosphates are unstable, decomposing at pH 7.1 and 37 degrees C with half-lives of 8.8 h and 25 min respectively, as compared with 7 h for fructosamine 3-phosphates. NMR analysis indicated that 1-deoxy-1-morpholinopsicose (DMP, a substrate for FN3K and FN3K-RP), like 1-deoxy-1-morpholinofructose (DMF, a substrate of FN3K), penetrated erythrocytes and was converted into the corresponding 3-phospho-derivative. Incubation of erythrocytes with 50 mM allose, 200 mM glucose or 10 mM ribose for 24 h resulted in the accumulation of glycated haemoglobin, and this accumulation was approx. 1.9-2.6-fold higher if DMP, a competitive inhibitor of both FN3K and FN3K-RP, was present in the incubation medium. Incubation with 50 mM allose or 200 mM glucose also caused the accumulation of ketoamine 3-phosphates, which was inhibited by DMP. By contrast, DMF, a specific inhibitor of FN3K, only affected the glucose-dependent accumulation of glycated haemoglobin and ketoamine 3-phosphates. These data indicate that FN3K-RP can phosphorylate intracellular, protein-bound psicosamines and ribulosamines, thus leading to deglycation.
Biochemical Journal | 2000
Ghislain Delpierre; Florent Vanstapel; Vincent Stroobant; Emile Van Schaftingen
Intact human erythrocytes catalyse the conversion of fructose into fructose 3-phosphate with an apparent K(m) of 30 mM [Petersen, Kappler, Szwergold and Brown (1992) Biochem. J. 284, 363-366]. The physiological significance of this process is still unknown. In the present study we report that the formation of fructose 3-phosphate from 50 mM fructose in intact erythrocytes is inhibited by 1-deoxy-1-morpholinofructose (DMF), a synthetic fructosamine, with an apparent K(i) of 100 microM. (31)P NMR analysis of cell extracts incubated with DMF indicated the presence of an additional phosphorylated compound, which was partially purified and shown to be DMF 3-phosphate by tandem MS. Radiolabelled DMF was phosphorylated by intact erythrocytes with an apparent K(m) ( approximately 100 microM) approx. 300-fold lower than the value reported for fructose phosphorylation on its third carbon. These results indicate that the physiological function of the enzyme that is able to convert fructose into fructose 3-phosphate in intact erythrocytes is probably to phosphorylate fructosamines. This suggests that fructosamines, which are produced non-enzymically from glucose and amino compounds, may be metabolized in human erythrocytes.
Diabetes | 2000
Ghislain Delpierre; Mark H. Rider; François Collard; Vincent Stroobant; Florent Vanstapel; Helena Santos; Emile Van Schaftingen
Biochemical Journal | 2002
Ghislain Delpierre; François Collard; Juliette Fortpied; Emile Van Schaftingen
Journal of Biological Chemistry | 2002
Elsa Wiame; Ghislain Delpierre; François Collard; Emile Van Schaftingen
Journal of Biological Chemistry | 2004
Jérôme Delplanque; Ghislain Delpierre; Frederik Opperdoes; Emile Van Schaftingen