François Georges
University of Bordeaux
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by François Georges.
Cell | 2012
Jing Han; Philip Kesner; Mathilde Metna-Laurent; Tingting Duan; Lin Xu; François Georges; Muriel Koehl; Djoher Nora Abrous; Juan Mendizabal-Zubiaga; Pedro Grandes; Qing-song Liu; Guang Bai; Weixu Wang; Lize Xiong; Wei Ren; Giovanni Marsicano; Xia Zhang
Impairment of working memory is one of the most important deleterious effects of marijuana intoxication in humans, but its underlying mechanisms are presently unknown. Here, we demonstrate that the impairment of spatial working memory (SWM) and in vivo long-term depression (LTD) of synaptic strength at hippocampal CA3-CA1 synapses, induced by an acute exposure of exogenous cannabinoids, is fully abolished in conditional mutant mice lacking type-1 cannabinoid receptors (CB(1)R) in brain astroglial cells but is conserved in mice lacking CB(1)R in glutamatergic or GABAergic neurons. Blockade of neuronal glutamate N-methyl-D-aspartate receptors (NMDAR) and of synaptic trafficking of glutamate α-amino-3-hydroxy-5-methyl-isoxazole propionic acid receptors (AMPAR) also abolishes cannabinoid effects on SWM and LTD induction and expression. We conclude that the impairment of working memory by marijuana and cannabinoids is due to the activation of astroglial CB(1)R and is associated with astroglia-dependent hippocampal LTD in vivo.
Brain | 2012
Lenka Mikasova; Pierre de Rossi; Delphine Bouchet; François Georges; Véronique Rogemond; Adrien Didelot; Claire Meissirel; Jérôme Honnorat; Laurent Groc
Autoimmune synaptic encephalitides are recently described human brain diseases leading to psychiatric and neurological syndromes through inappropriate brain-autoantibody interactions. The most frequent synaptic autoimmune encephalitis is associated with autoantibodies against extracellular domains of the glutamatergic N-methyl-d-aspartate receptor, with patients developing psychotic and neurological symptoms in an autoantibody titre-dependent manner. Although N-methyl-d-aspartate receptors are the primary target of these antibodies, the cellular and molecular pathway(s) that rapidly lead to N-methyl-d-aspartate receptor dysfunction remain poorly understood. In this report, we used a unique combination of high-resolution nanoparticle and bulk live imaging approaches to demonstrate that anti-N-methyl-d-aspartate receptor autoantibodies from patients with encephalitis strongly alter, in a time-dependent manner, the surface content and trafficking of GluN2-NMDA receptor subtypes. Autoantibodies laterally displaced surface GluN2A-NMDA receptors out of synapses and completely blocked synaptic plasticity. This loss of extrasynaptic and synaptic N-methyl-d-aspartate receptor is prevented both in vitro and in vivo, by the activation of EPHB2 receptors. Indeed, the anti-N-methyl-d-aspartate receptor autoantibodies weaken the interaction between the extracellular domains of the N-methyl-d-aspartate and Ephrin-B2 receptors. Together, we demonstrate that the anti-N-methyl-d-aspartate receptor autoantibodies from patients with encephalitis alter the dynamic retention of synaptic N-methyl-d-aspartate receptor through extracellular domain-dependent mechanism(s), shedding new light on the pathology of the neurological and psychiatric disorders observed in these patients and opening possible new therapeutic strategies.
European Journal of Neuroscience | 1999
François Georges; Luis Stinus; Bertrand Bloch; Catherine Le Moine
The influence of chronic morphine and spontaneous withdrawal on the expression of dopamine receptors and neuropeptide genes in the rat striatum was investigated. Morphine dependence was induced by subcutaneous implantation of two morphine pellets for 6 days. Rats were made abstinent by removal of the pellets 1, 2 or 3 days before they were killed. The mRNA levels coding for D1‐ and D2‐dopamine receptors, dynorphin, preproenkephalin A and substance P were determined by quantitative in situ hybridization. The caudate putamen and the nucleus accumbens showed equivalent modifications in dopamine receptor and neuropeptide gene expression. After 6 days of morphine, a decrease in D2‐dopamine receptor and neuropeptide mRNA levels was observed (– 30%), but there was no change in D1‐dopamine receptor mRNA. In abstinent rats, both D1‐ and D2‐dopamine receptor mRNA levels were decreased 1 day after withdrawal (– 30% compared with chronic morphine). In contrast, neuropeptide mRNA levels were unaffected when compared with those observed after 6 days of morphine. During the second and third day of withdrawal, there was a gradual return to the levels seen in the placebo‐treated group, for both dopamine receptor and neuropeptide mRNAs. Phenotypical characterization of striatal neurons expressing μ and κ opioid receptor mRNAs showed that, in striatonigral neurons, both mRNAs were colocalized with D1‐receptor and Dyn mRNAs. Our results suggest that during morphine dependence, dopamine and morphine exert opposite effects on striatonigral neurons, and that effects occurring on striatopallidal neurons are under dopaminergic control. We also show that withdrawal is associated with a down regulation of the postsynaptic D1 and D2 receptors.
The Journal of Neuroscience | 2012
Michel Barrot; Susan R. Sesack; François Georges; Marco Pistis; Simon Hong; Thomas C. Jhou
A new mesopontine structure exerting a strong influence on dopamine systems has recently been defined: the tail of the ventral tegmental area/rostromedial tegmental nucleus (tVTA/RMTg). This review presents a neuroanatomical, physiological, and behavioral overview of some of the recent and ongoing research on this brain region and its relationship with dopamine systems. The tVTA/RMTg sends dense GABA projections to VTA and substantia nigra neurons. The inhibitory influence of tVTA/RMTg on dopamine neurons is supported by both neuroanatomical and electrophysiology data. The latter studies also reveal the tVTA/RMTg as a substrate for morphine and cannabinoid action on dopamine cells. In primates, the tVTA/RMTg has been implicated in reward prediction error signals, through a basal ganglia–lateral habenula–tVTA/RMTg–dopamine–basal ganglia circuit. In rodents, the tVTA/RMTg has been shown to play a critical role in aversive behaviors, particularly those involving behavioral inhibition, such as freezing and avoidance. These findings highlight the functional importance of the tVTA/RMTg as a major GABA brake for dopamine systems.
Nature Neuroscience | 2011
Nagore Puente; Yihui Cui; Olivier Lassalle; Mathieu Lafourcade; François Georges; Laurent Venance; Pedro Grandes; Olivier J. Manzoni
The reason why neurons synthesize more than one endocannabinoid (eCB) and how this is involved in the regulation of synaptic plasticity in a single neuron is not known. We found that 2-arachidonoylglycerol (2-AG) and anandamide mediate different forms of plasticity in the extended amygdala of rats. Dendritic L-type Ca2+ channels and the subsequent release of 2-AG acting on presynaptic CB1 receptors triggered retrograde short-term depression. Long-term depression was mediated by postsynaptic mGluR5-dependent release of anandamide acting on postsynaptic TRPV1 receptors. In contrast, 2-AG/CB1R-mediated retrograde signaling mediated both forms of plasticity in the striatum. These data illustrate how the eCB system can function as a polymodal signal integrator to allow the diversification of synaptic plasticity in a single neuron.
The Journal of Neuroscience | 2008
Léma Massi; Izaskun Elezgarai; Nagore Puente; Leire Reguero; Pedro Grandes; Olivier J. Manzoni; François Georges
The endocannabinoid system is involved in multiple physiological functions including reward. Cannabinoids potently control the activity of midbrain dopamine cells, but the contribution of cortical projections in this phenomenon is unclear. We show that the bed nucleus of the stria terminalis (BNST) efficient relays cortical excitation to dopamine neurons of the ventral tegmental area (VTA). Anatomical and in vivo electrophysiological evidence demonstrate that excitatory projections arising exclusively from the infralimbic cortex converge on BNST neurons, which in turn project to and excite >80% VTA dopamine cells. At the ultrastructural level, cannabinoid type 1 receptors are detected within the BNST on axon terminals arising from the infralimbic cortex. We found that intra-BNST infusion of a cannabinoid agonist inhibits the firing of dopamine cells evoked by stimulation of the infralimbic cortex. Our data identify a new neuronal substrate for the actions of cannabinoids in the reward pathway.
The Journal of Neuroscience | 2006
Agnès Nadjar; Jonathan M. Brotchie; Céline Guigoni; Qin Li; Shao Bo Zhou; Gui Jie Wang; Paula Ravenscroft; François Georges; A.R. Crossman; Erwan Bezard
The classic view of anatomofunctional organization of the basal ganglia is that striatopallidal neurons of the “indirect” pathway express D2 dopamine receptors and corelease enkephalin with GABA, whereas striatopallidal neurons of the “direct” pathway bear D1 dopamine receptors and corelease dynorphin and substance P with GABA. Although many studies have investigated the pathophysiology of the basal ganglia after dopamine denervation and subsequent chronic levodopa (l-dopa) treatment, none has ever considered the possibility of plastic changes leading to profound reorganization and/or biochemical phenotype modifications of medium spiny neurons. Therefore, we studied the phenotype of striatal neurons in four groups of nonhuman primates, including the following: normal, parkinsonian, parkinsonian chronically treated with l-dopa without exhibiting dyskinesia, and parkinsonian chronically treated with l-dopa exhibiting overt dyskinesia. To identify striatal cells projecting to external (indirect) or internal (direct) segments of the globus pallidus, the retrograde tracer cholera toxin subunit B (CTb) was injected stereotaxically into the terminal areas. Using immunohistochemistry techniques, brain sections were double labeled for CTb and dopamine receptors, opioid peptides, or the substance P receptor (NK1). We also used HPLC-RIA to assess opioid levels throughout structures of the basal ganglia. Our results suggest that medium spiny neurons retain their phenotype because no variations were observed in any experimental condition. Therefore, it appears unlikely that dyskinesia is related to a phenotype modification of the striatal neurons. However, this study supports the concept of axonal collateralization of striatofugal cells that project to both globus pallidus pars externa and globus pallidus pars interna. Striatofugal pathways are not as segregated in the primate as previously considered.
The Journal of Neuroscience | 2006
François Georges; Catherine Le Moine; Gary Aston-Jones
Substantial evidence indicates that the ventral tegmental area (VTA) of the mesocorticolimbic dopaminergic (DA) system has a key role in mechanisms of opiate dependence. Although DA neurons have been studied extensively, little is known about their activity and their response to acute morphine during morphine dependence. We recorded the activity of VTA DA neurons in five groups of anesthetized rats: drug-naive (naive) rats, morphine-dependent [(MD) implanted with pellets] rats, and three groups of withdrawn rats. Withdrawals either were precipitated by naltrexone or occurred spontaneously 24 h or 15 d after pellet removal. We confirmed that acute morphine in naive rats produced a marked increase in the firing of VTA DA neurons. We also found that the basal firing rate of VTA DA neurons was markedly higher in MD than in naive rats; however, in MD rats, acute morphine failed to increase DA activity. We confirmed inhibition of VTA DA activity in MD rats in response to precipitated withdrawal; however, this inhibition resulted only in a normalization of the firing rate to that of naive animals. In rats that had spontaneous withdrawal after 24 h or 15 d, the activity of VTA DA neurons was similar to that of naive rats, and an acute injection of morphine failed to alter their activity. Our results indicate that VTA DA neurons show long-lasting tolerance to the acute effect of morphine after withdrawal. These findings show that VTA DA neural activity is unlikely to be a factor in the altered behavioral responses that occur with acute morphine or naltrexone administration after chronic opiate exposure.
Biological Psychiatry | 2013
Sarah Dubreucq; Audrey Durand; Isabelle Matias; Giovanni Benard; Elodie Richard; Edgar Soria-Gómez; Christelle Glangetas; Laurent Groc; Aya Wadleigh; Federico Massa; Dusan Bartsch; Giovanni Marsicano; François Georges; Francis Chaouloff
BACKGROUND We have shown that the endogenous stimulation of cannabinoid type-1 (CB₁) receptors is a prerequisite for voluntary running in mice, but the precise mechanisms through which the endocannabinoid system exerts a tonic control on running performance remain unknown. METHODS We analyzed the respective impacts of constitutive/conditional CB₁ receptor mutations and of CB₁ receptor blockade on wheel-running performance. We then assessed the consequences of ventral tegmental area (VTA) CB₁ receptor blockade on the wheel-running performances of wildtype (gamma-aminobutyric acid [GABA]-CB₁⁺/⁺) and mutant (GABA-CB₁⁻/⁻) mice for CB₁ receptors in brain GABA neurons. Using in vivo electrophysiology, the consequences of wheel running on VTA dopamine (DA) neuronal activity were examined in GABA-CB₁⁺/⁺ and GABA-CB₁⁻/⁻ mice. RESULTS Conditional deletion of CB₁ receptors from brain GABA neurons, but not from several other neuronal populations or from astrocytes, decreased wheel-running performance in mice. The inhibitory consequences of either the systemic or the intra-VTA administration of CB1 receptor antagonists on running behavior were abolished in GABA-CB₁⁻/⁻ mice. The absence of CB1 receptors from GABAergic neurons led to a depression of VTA DA neuronal activity after acute/repeated wheel running. CONCLUSIONS This study provides evidence that CB₁ receptors on VTA GABAergic terminals exert a permissive control on rodent voluntary running performance. Furthermore, it is shown that CB₁ receptors located on GABAergic neurons impede negative consequences of voluntary exercise on VTA DA neuronal activity. These results position the endocannabinoid control of inhibitory transmission as a prerequisite for wheel-running performance in mice.
Developmental Brain Research | 1998
François Georges; Elisabeth Normand; Bertrand Bloch; Catherine Le Moine
The three main types of opioid receptors micro, delta and kappa are found in the central nervous system and periphery. In situ hybridization study was undertaken to determine the expression of mu, delta, kappa-opioid receptors mRNAs in the brain during pre- and postnatal development, especially in the mesostriatal system. By G13, mu and kappa-opioid receptor mRNA were detectable in the telencephalon; mu-opioid receptor mRNA was found in the striatal neuroepithelium and cortical plate and kappa-opioid receptor mRNA in the corroidal fissure. By G15, kappa-opioid receptor mRNA was detectable in the nucleus accumbens and dorsal striatum, and in the substantia nigra and ventral tegmental area, suggesting an early expression of the corresponding receptor on dopaminergic terminal fibers. For the mu-opioid receptor mRNA in the striatum, patches appeared at G20. Delta-opioid receptor mRNA was first detected at G21, in many areas including the accumbens nucleus and the dorsal striatum. At P8, delta-opioid receptor mRNA was detected in large-sized cells of the striatum, possibly cholinergic, suggesting a possible modulation by opioids of the striatal cholinergic neurons. Our results demonstrate the early appearance of mu and kappa-opioid receptor mRNA (G13) and the relatively late development of delta-opioid receptor mRNA (G21) in the brain. We also show a distinct pattern of expression for mu, delta and kappa-opioid receptor mRNAs in the mesostriatal system during the development.