Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francois Lacan is active.

Publication


Featured researches published by Francois Lacan.


Earth and Planetary Science Letters | 2001

Tracing Papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns

Francois Lacan; Catherine Jeandel

Abstract The Nd isotopic composition (IC) and Rare Earth patterns of hydrodynamic structures of the Equatorial Pacific Ocean were characterized along 140°W. The Nd IC of Antarctic Intermediate Water (AAIW) and of the lower layer of the Equatorial Undercurrent (EUC) at 140°W (13°C Water) are much more radiogenic at the equator than at their origin in the South Equatorial Current (12°S), revealing that these water masses have been in contact with the highly radiogenic Papua New Guinea (PNG) slope. In both cases, only a small fraction (less than 9%) of the sediment deposited on the PNG slope is required to be exchanged or dissolved to explain these Nd IC variations, whereas the hydrographic properties of the same water masses remain unchanged. This confirms the usefulness of this tracer to identify pathways of water masses. These results emphasize the importance of jets in transporting lithogenic material into the subsurface layers of remote areas, where aeolian inputs are particularly weak and corroborate the previous results on Fe and Al maximum in this area [M.L. Wells, G.K. Vallis, E.A. Silver, Nature 398 (1999) 601–604]. The Nd IC of the upper layer of the EUC contrasts strongly to that of the subpycnocline layer, indicating that the equatorial upwelling only affects the surface waters and is not effective between 120 and 150 m. We calculate that the Nd imprint of the PNG input is likely to vanish from this surface layer as it traverses the basin, due to the replacement of upwelled waters by non-radiogenic ones.


Geochemistry Geophysics Geosystems | 2005

Acquisition of the neodymium isotopic composition of the North Atlantic Deep Water

Francois Lacan; Catherine Jeandel

The North Atlantic Deep Water (NADW) neodymium isotopic composition (Nd IC) is increasingly used in oceanography and paleoceanography to trace large-scale circulation and weathering processes, notably to investigate past variations of the global thermohaline circulation. Although the present-day NADW Nd IC is well characterized at ɛNd = −13.5, the acquisition of this isotopic signature (in other words, the causes of this value) has so far been very sparsely documented. Such an understanding is, however, fundamental to the interpretation of paleo records. Nd IC and rare earth element concentrations were measured at 9 stations within the North Atlantic Subpolar Gyre (SIGNATURE cruise, summer 1999). The comparison of this data set with our understanding of water mass circulation provides a description of how the three layers constituting the NADW, the Labrador Sea Water (LSW, ɛNd = −13.9 ± 0.4), North East Atlantic Deep Water (NEADW, ɛNd −13.2 ± 0.4), and North West Atlantic Bottom Water (NWABW, ɛNd −14.5 ± 0.4), acquire their Nd IC through distinct water mass mixings and lithogenic inputs. These different mechanisms, acting upon water masses from very diverse sources, seem to bring the Nd IC of the three NADW layers to values close together and similar to that of the NADW. It is suggested that sediment/seawater interactions significantly lower the NEADW and NWABW Nd IC along the South East Greenland margin. Since these interactions do not significantly modify the Nd content of these water masses, sediment remobilizations leading to the Nd IC variations are probably associated with Nd removal fluxes from the water mass toward the sediment, a process called boundary exchange. On the other hand, LSW seems to acquire its Nd IC from the Subpolar Mode Waters from which it is formed by deep convection, and no other mechanism needs to be invoked. Its unradiogenic signature could ultimately be linked to fresh water runoff from the Canadian Shield. These conclusions should allow more precise interpretations of paleoceanographic Nd IC records, taking into account the distinct histories of the three NADW layers, including distinct water mass mixings and distinct lithogenic inputs.


Geochemistry Geophysics Geosystems | 2004

Neodymium isotopic composition and rare earth element concentrations in the deep and intermediate Nordic Seas: Constraints on the Iceland Scotland Overflow Water signature

Francois Lacan; Catherine Jeandel

Neodymium isotopic composition and rare earth element concentrations were measured in seawater samples from eleven stations in the Nordic Seas. These data allow us to study how the Iceland Scotland Overflow Water (ISOW) acquires its neodymium signature in the modern ocean. The waters overflowing the Faroe Shetland channel are characterized by ɛNd = −8.2 ± 0.6, in good agreement with the only other data point, published 19 years ago. In the Greenland and Iceland Seas the water masses leading to the formation of the ISOW display lower neodymium isotopic composition, with ɛNd around −11 and −9, respectively. Since no water masses in the Nordic Seas are characterized by ɛNd > −8, the radiogenic signature of the ISOW likely reflects inputs from the highly radiogenic Norwegian Basin basaltic margins (Jan-Mayen, Iceland, Faroe, with ɛNd ≈ +7). In addition to the neodymium isotopic composition, the rare earth element patterns suggest that these inputs occur via the remobilization (which includes resuspension and dissolution) of sediments deposited on the margins. Whereas the neodymium isotopic composition behaves conservatively in the oceans in the absence of lithogenic inputs, and can be used as a water mass tracer, these results emphasize the role of interactions, between sediments deposited on margins and seawater, in the acquisition of the neodymium isotopic composition of water masses. These results should allow a better use of this parameter to trace the present and the past circulation in the North Atlantic.


Geophysical Research Letters | 2008

Measurement of the isotopic composition of dissolved iron in the open ocean

Francois Lacan; Amandine Radic; Catherine Jeandel; Franck Poitrasson; Géraldine Sarthou; Catherine Pradoux; Rémi Freydier

This work demonstrates for the first time the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for a typical open ocean Fe concentration range (0.1-1nM). It also presents the first data of this kind. Iron is preconcentrated using a Nitriloacetic Acid Superflow resin and purified using an AG1x4 anion exchange resin. The isotopic ratios are measured with a MC-ICPMS Neptune, coupled with a desolvator (Aridus II), using a 57Fe-58Fe double spike mass bias correction. Measurement precision (0.13‰, 2SD) allow resolving small iron isotopic composition variations within the water column, in the Atlantic sector of the Southern Ocean (from deltaFe=-0.19 to +0.32‰). Isotopically light iron found in the Upper Circumpolar Deep Water is hypothesized to result from organic matter remineralization. Shallow samples suggest that, if occurring, an iron isotopic fractionation during iron uptake by phytoplankton is characterized by a fractionation factor, such as: abs(deltaFe(plankton-seawater))< 0.48‰.


Global Biogeochemical Cycles | 2014

Iron sources and dissolved‐particulate interactions in the seawater of the Western Equatorial Pacific, iron isotope perspectives

Marie Labatut; Francois Lacan; Catherine Pradoux; Jérôme Chmeleff; Amandine Radic; James W. Murray; Franck Poitrasson; Anne M. Johansen; François Thil

This work presents iron isotope data in the western equatorial Pacific. Marine aerosols and top core margin sediments display a slightly heavy Fe isotopic composition (δ 56 Fe) of 0.33 ± 0.11‰ (2SD) and 0.14 ± 0.07‰, respectively. Samples reflecting the influence of Papua New Guinea runoff (Sepik River and Rabaul volcano water) are characterized by crustal values. In seawater, Fe is mainly supplied in the particulate form and is found with a δ 56 Fe between A0.49 and 0.34 ± 0.07‰. The particulate Fe seems to be brought mainly by runoff and transported across continental shelves and slopes. Aerosols are suspected to enrich the surface Vitiaz Strait waters, while hydrothermal activity likely enriched New Ireland waters. Dissolved Fe isotopic ratios are found between A0.03 and 0.53 ± 0.07‰. They are almost systematically heavier than the corresponding particulate Fe, and the difference between the signature of both phases is similar for most samples with Δ 56 Fe DFe – PFe = +0.27 ± 0.25‰ (2SD). This is interpreted as an equilibrium isotopic fractionation revealing exchange fluxes between both phases. The dissolved phase being heavier than the particles suggests that the exchanges result in a net nonreductive release of dissolved Fe. This process seems to be locally significantly more intense than Fe reductive dissolution documented along reducing margins. It may therefore constitute a very significant iron source to the ocean, thereby influencing the actual estimation of the iron residence time and sinks. The underlying processes could also apply to other elements.


Analytical Chemistry | 2010

High-precision determination of the isotopic composition of dissolved iron in iron depleted seawater by double spike multicollector-ICPMS.

Francois Lacan; Amandine Radic; Marie Labatut; Catherine Jeandel; Franck Poitrasson; Géraldine Sarthou; Catherine Pradoux; Jérôme Chmeleff; Rémi Freydier

This work demonstrates the feasibility of the measurement of the isotopic composition of dissolved iron in seawater for an iron concentration range, 0.05-1 nmol L(-1), allowing measurements in most oceanic waters, including Fe depleted waters of high nutrient low chlorophyll areas. It presents a detailed description of our previously published protocol, with significant improvements on detection limit and blank contribution. Iron is preconcentrated using a nitriloacetic acid superflow resin and purified using an AG 1-x4 anion exchange resin. The isotopic ratios are measured with a multicollector-inductively coupled plasma mass spectrometer (MC-ICPMS) Neptune, coupled with a desolvator (Aridus II or Apex-Q), using a (57)Fe-(58)Fe double spike mass bias correction. A Monte Carlo test shows that optimum precision is obtained for a double spike composed of approximately 50% (57)Fe and 50% (58)Fe and a sample to double spike quantity ratio of approximately 1. Total procedural yield is 91 +/- 25% (2SD, n = 55) for sample sizes from 20 to 2 L. The procedural blank ranges from 1.4 to 1.1 ng, for sample sizes ranging from 20 to 2 L, respectively, which, converted into Fe concentrations, corresponds to blank contributions of 0.001 and 0.010 nmol L(-1), respectively. Measurement precision determined from replicate measurements of seawater samples and standard solutions is 0.08 per thousand (delta(56)Fe, 2SD). The precision is sufficient to clearly detect and quantify isotopic variations in the oceans, which so far have been observed to span 2.5 per thousand and thus opens new perspectives to elucidate the oceanic iron cycle.


Journal of Analytical Atomic Spectrometry | 2013

Rare earth element analysis in natural waters by multiple isotope dilution – sector field ICP-MS

Tristan C. C. Rousseau; Jeroen E. Sonke; Jérôme Chmeleff; Frédéric Candaudap; Francois Lacan; Geraldo Resende Boaventura; Patrick Seyler; Catherine Jeandel

The rare earth elements (REEs) are valuable tracers in the earth, ocean and environmental sciences. Ten out of fourteen stable REEs have two or more isotopes, making them suitable for quantification by isotope dilution. We present a plasma mass spectrometry based multiple isotope dilution method for high precision REE concentration analysis in aqueous media. Key aspects of the method are: (i) flexible spiking of ten REEs via two LREE and HREE mixed spike solutions. (ii) Offline pre-concentration and matrix removal, by ion chromatography for freshwater samples and by iron co-precipitation or ion chromatography with the Nobias™ resin for seawater samples. (iii) High sensitivity detection by sector field-inductively coupled plasma mass spectrometry (SF-ICP-MS). (vi) The use of a desolvation micro-nebulization introduction system to lower polyatomic Ba and LREE-oxide interferences on HREEs. The method is suitable for a range of freshwater to seawater type samples, and was validated against SLRS-4, SLRS-5, and CASS-5 reference materials and two GEOTRACES marine inter-comparison samples. Long-term external precision on all REEs was <2% RSD, except La and Ce. Minimum sample volumes are 1 ml for freshwater and 50 ml for seawater. The multispike SF-ICP-MS method should be of particular interest in exploring subtle variations in aqueous REE fractionation patterns and anomalies in large numbers of samples.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean

Cyril Abadie; Francois Lacan; Amandine Radic; Catherine Pradoux; Franck Poitrasson

Significance Iron is an essential micronutrient for life. However, its scarcity limits algae growth in about one-half of the ocean. Its cycle is therefore linked to the global carbon cycle and climate. We present an iron isotope section from the Southern Ocean. In contrast to the common but oversimplified view, according to which organic matter remineralization is the major pathway releasing dissolved iron below the surface layers, these data reveal other dominant processes at depth, likely abiotic desorption/dissolution from lithogenic particles. This suggests that the iron cycle, and therefore primary production and climate, may be more sensitive than previously thought to continental erosion, dissolved/particle interactions, and deep water upwelling. These processes likely impact other elements in the ocean. As an essential micronutrient, iron plays a key role in oceanic biogeochemistry. It is therefore linked to the global carbon cycle and climate. Here, we report a dissolved iron (DFe) isotope section in the South Atlantic and Southern Ocean. Throughout the section, a striking DFe isotope minimum (light iron) is observed at intermediate depths (200–1,300 m), contrasting with heavier isotopic composition in deep waters. This unambiguously demonstrates distinct DFe sources and processes dominating the iron cycle in the intermediate and deep layers, a feature impossible to see with only iron concentration data largely used thus far in chemical oceanography. At intermediate depths, the data suggest that the dominant DFe sources are linked to organic matter remineralization, either in the water column or at continental margins. In deeper layers, however, abiotic non-reductive release of Fe (desorption, dissolution) from particulate iron—notably lithogenic—likely dominates. These results go against the common but oversimplified view that remineralization of organic matter is the major pathway releasing DFe throughout the water column in the open ocean. They suggest that the oceanic iron cycle, and therefore oceanic primary production and climate, could be more sensitive than previously thought to continental erosion (providing lithogenic particles to the ocean), particle transport within the ocean, dissolved/particle interactions, and deep water upwelling. These processes could also impact the cycles of other elements, including nutrients.


Biogeosciences Discussions | 2018

Introduction to the French GEOTRACES North Atlantic Transect (GA01): GEOVIDE cruise

Géraldine Sarthou; Pascale Lherminier; Eric P. Achterberg; Fernando Alonso-Pérez; Eva Bucciarelli; Julia Boutorh; Vincent Bouvier; Edward A. Boyle; Pierre Branellec; Lidia I. Carracedo; Núria Casacuberta; Maxi Castrillejo; Marie Cheize; Leonardo Contreira Pereira; Daniel Cossa; Nathalie Daniault; Emmanuel De Saint-Léger; Frank Dehairs; Feifei Deng; Floriane Desprez de Gésincourt; Jérémy Devesa; Lorna Foliot; Debany Fonseca-Batista; Morgane Gallinari; Maribel I. García-Ibáñez; Arthur Gourain; Emilie Grossteffan; M. Hamon; Lars-Eric Heimbürger; Gideon M. Henderson

The GEOVIDE cruise, a collaborative project within the framework of the international GEOTRACES programme, was conducted along the French-led section in the North Atlantic Ocean (Section GA01), between 15 May and 30 June 2014. In this special issue (https://www.biogeosciences.net/special_issue900.html), results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 18 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue. 1 Scientific context and objectives Understanding the distribution, sources, and sinks of trace elements and isotopes (TEIs) will improve our ability to understand past and present marine environments. Some TEIs are toxic (e.g. Hg), while others are essential micronutrients involved in many metabolic processes of marine organisms (e.g. Fe, Mn). The availability of TEIs therefore constrains the ocean carbon cycle and affects a range of other biogeochemical processes in the Earth system, whilst responding to and influencing global change (de Baar et al., 2005; Blain et al., 2007; Boyd et al., 2007; Pollard et al., 2007). Moreover, TEI interactions with the marine food web strongly depend on their physical (particulate/dissolved/colloidal/soluble) and chemical (organic and redox) forms. In addition, some TEIs are diagnostic in allowing the quantification of specific mechanisms in the marine environment that are challenging to measure directly. A few examples include (i) atmospheric deposition (e.g. 210Pb, Al, Mn, Th isotopes, 7Be; Baker et al., 2016; Hsieh et al., 2011; Measures and Brown, 1996); (ii) mixing rates of deep waters or shelf-to-open ocean (e.g. 231Pa/230Th,114C, Ra isotopes, 129I, 236U; van Beek et al., 2008; Casacuberta et al., 2016; Key et al., 2004); (iii) boundary exchange processes (e.g. εNd, Jeandel et al., 2011; Lacan and Jeandel, 2001, 2005); and (iv) downward flux of organic carbon and/or remineralization in deep waters (e.g. 234Th/238U, 210Pb/210Po, Baxs; Buesseler et al., 2004; Dehairs et al., 1997; Roca-Martí et al., 2016). In such settings, TEIs provide chemical constraints and allow the estimation of fluxes which was not possible before the development of their analyses. Finally, paleoceanographers are wholly dependent on the development of tracers, many of which are based on TEIs used as proxies, in order to reconstruct past environmental conditions (e.g. ocean productivity, patterns and rates of ocean circulation, ecosystem structures, ocean anoxia; Henderson, 2002). Such reconstruction efforts are essential to assess the processes involved in regulating the global climate system, and possible future climate change variability. Despite all these major implications, the distribution, sources, sinks, and internal cycling of TEIs in the oceans are still largely unknown due to the lack of appropriate clean sampling approaches and insufficient sensitivity and selectivity of the analytical measurement techniques until recently. This last point has improved very quickly as significant improvements in the instrumental techniques now allow the measurements of concentrations, speciation (physical and chemical forms), and isotopic compositions for most of the elements of the periodic table which have been identified either as relevant tracers or key nutrients in the marine environment. These recent advances provide the marine geochemistry community with a significant opportunity to make subBiogeosciences, 15, 7097–7109, 2018 www.biogeosciences.net/15/7097/2018/ G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) 7099 Figure 1. Schematic diagram of the mean large-scale circulation adapted from Daniault et al. (2016) and Zunino et al. (2017). Bathymetry is plotted in color with color changes at 100 and 1000 m and every 1000 m below 1000 m. Black dots represent the Short station, yellow stars the Large ones, orange stars the XLarge ones, and red stars the Super ones. The main water masses are indicated: Denmark Strait Overflow Water (DSOW), Iceland–Scotland Overflow Water (ISOW), Labrador Sea Water (LSW), Mediterranean Water (MW), and lower North East Atlantic Deep Water (LNEADW). stantial contributions to a better understanding of the marine environment. In this general context, the aim of the international GEOTRACES programme is to characterize TEI distributions on a global scale, consisting of ocean sections, and regional process studies, using a multi-proxy approach. The GEOVIDE section is the French contribution to this global survey in the North Atlantic Ocean along the OVIDE section and in the Labrador Sea (Fig. 1) and complements a range of other international cruises in the North Atlantic. GEOVIDE leans on the knowledge gained by the OVIDE project during which the Portugal–Greenland section has been carried out biennially since 2002, gathering physical and biogeochemical data from the surface to the bottom (Mercier et al., 2015; Pérez et al., 2018). Rationale for the GEOVIDE section i. The North Atlantic Ocean plays a key role in mediating the climate of the Earth. It represents a key region of the Meridional Overturning Circulation (MOC) and a major sink of anthropogenic carbon (Cant) (Pérez et al., 2013; Sabine et al., 2004; Seager et al., 2002). Since 2002, the OVIDE project has contributed to the observation of both the circulation and water mass properties of the North Atlantic Ocean. Despite the importance of the MOC on global climate, it is still challenging to assess its strength within a reasonable uncertainty (Kanzow et al., 2010; Lherminier et al., 2010). The MOC strength estimated from in situ measurements on OVIDE cruises has thus helped to validate a time series for the amplitude of the MOC (based on altimetry and ARGO float array data) that exhibits a drop of 2.5± 1.4 Sv (95 % confidence interval) between 1993 and 2010 (Mercier et al., 2015), consistent with other modelling studies (Xu et al., 2013). This time series, along with the in situ data, shows a recovery of the MOC amplitude in 2014 at a value similar to those of the mid1990s, confirming the importance of the decadal variability in the subpolar gyre. During OVIDE, the contributions of the most relevant currents, water masses, and biogeochemical provinces were localized and quantified. This knowledge was crucial for the establishment of the best strategy to sample TEIs in this specific region. In addition to the OVIDE section, the Labrador Sea section offered a unique opportunity to complement the MOC estimate, to analyse the propagation of anomalies in temperature and salinity (Reverdin et al., 1994), and to study the distribution of TEIs along the boundary current of the subpolar gyre, coupling both observations and modelling. Moreover, recent results provided evidence that CO2 uptake in the North Atlantic was reduced by the weakening of the MOC (Pérez et al., 2013). The most significant finding of this study was that the uptake of Cant occurred almost exclusively in the subtropical gyre, while natural CO2 uptake dominated in the subpolar gyre. In light of these new results, one issue to be addressed was the coupling between the Cant and the transport of water, with the aim to understand how the changes in the ventilation and in the circulation of water masses affect the Cant uptake and its storage capacity in the various identified provinces (Fröb et al., 2018). Finally, as the subpolar North Atlantic forms the starting point for the global ocean conveyor belt, it is of particular interest to investigate how TEIs are transferred to the deep ocean through both ventilation and particle sinking, and how deep convection processes impact the TEI distributions in this key region. ii. A better assessment of the factors that control organic production and export of carbon in the productive North Atlantic Ocean together with a better understanding of the role played by TEIs in these processes is research priorities. Pronounced phytoplankton blooms occur in the North Atlantic in spring in response to upwelling and water column destratification (Bury et al., 2001; Henson et al., 2009; Savidge et al., 1995). Such www.biogeosciences.net/15/7097/2018/ Biogeosciences, 15, 7097–7109, 2018 7100 G. Sarthou et al.: French GEOTRACES North Atlantic Transect (GA01) blooms are known to trigger substantial export of fastsinking particles (Lampitt, 1985), and can represent a major removal mechanism for particulate organic carbon, macronutrients, and TEIs to the deep ocean. iii. In the North Atlantic, TEI distributions are influenced by a variety of sources including, most importantly, the atmosphere and the margins (Iberian, Greenland, and Labrador margins). 1. Atmosphere. Atmospheric inputs (e.g. mineral dust, anthropogenic emission aerosols) are an important source of TEIs to the North Atlantic Ocean due to the combined effects of anthropogenic emissions from industrial/agricultural sources and mineral dust mobilized from the arid regions of North Africa (Duce et al., 2008; Jickells et al., 2005). Model and satellite data for the GEOVIDE section suggested that an approximately 10fold decrease in the atmospheric concentrations of mineral dust was expected from south to north (Mahowald et al., 2005). As there had been relatively few aerosol TEI studies in the northern North Atlantic compared to the tropical and subtropical North Atlantic prior to GEOVIDE, constraining atmospheric deposition fluxes to this region had been identified as a research priority (de Leeuw et al., 2014). During the GEOVIDE campaign, a multi-proxy approach (e.g. aerosol trace element concentrations, dissolved and particulate Al and Mn, seawater 210Pb, Fe, Nd, and Th isotopes, 7Be) was taken to achieve the objective of better constraining the atmospheric deposition fluxes of key trace elements. 2. Margins. The continental shelves can act


Earth and Planetary Science Letters | 2005

Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent-ocean interface

Francois Lacan; Catherine Jeandel

Collaboration


Dive into the Francois Lacan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Dutay

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Arsouze

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Franck Poitrasson

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge