Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas Arsouze is active.

Publication


Featured researches published by Thomas Arsouze.


Bulletin of the American Meteorological Society | 2016

Med-CORDEX initiative for Mediterranean climate studies

Paolo Michele Ruti; Samuel Somot; Filippo Giorgi; Clotilde Dubois; Emmanouil Flaounas; Anika Obermann; A. Dell’aquila; G. Pisacane; Ali Harzallah; E. Lombardi; Bodo Ahrens; Naveed Akhtar; Antoinette Alias; Thomas Arsouze; R. Aznar; Sophie Bastin; Judit Bartholy; Karine Béranger; Jonathan Beuvier; Sophie Bouffies-Cloché; J. Brauch; William Cabos; Sandro Calmanti; Jean-Christophe Calvet; Adriana Carillo; Dario Conte; Erika Coppola; V. Djurdjevic; Philippe Drobinski; A. Elizalde-Arellano

The Mediterranean is expected to be one of the most prominent and vulnerable climate change “hot spots” of the 21st century, and the physical mechanisms underlying this finding are still not clear. Furthermore complex interactions and feedbacks involving ocean-atmosphere-land-biogeochemical processes play a prominent role in modulating the climate and environment of the Mediterranean region on a range of spatial and temporal scales. Therefore it is critical to provide robust climate change information for use in Vulnerability/Impact/Adaptation assessment studies considering the Mediterranean as a fully coupled environmental system. The Med-CORDEX initiative aims at coordinating the Mediterranean climate modeling community towards the development of fully coupled regional climate simulations, improving all relevant components of the system, from atmosphere and ocean dynamics to land surface, hydrology and biogeochemical processes. The primary goals of Med-CORDEX are to improve understanding of past climate variability and trends, and to provide more accurate and reliable future projections, assessing in a quantitative and robust way the added value of using high resolution and coupled regional climate models. The coordination activities and the scientific outcomes of Med-CORDEX can produce an important framework to foster the development of regional earth system models in several key regions worldwide.


Geochemistry Geophysics Geosystems | 2010

Continental bedrock and riverine fluxes of strontium and neodymium isotopes to the oceans

Bernhard Peucker-Ehrenbrink; Mark W. Miller; Thomas Arsouze; Catherine Jeandel

Realistic models of past climate and ocean chemistry depend on reconstructions of the Earths surface environments in the geologic past. Among the critical parameters is the geologic makeup of continental drainage. Here we show, for the present, that the isotope composition of dissolved strontium in rivers increases linearly with the age of bedrock in drainage basins, with the notable exception of the drainage area of Arabia, India, and Southeast Asia that is affected by unusually radiogenic dissolved Sr from the Himalaya. We also demonstrate that the neodymium isotope compositions of suspended matter in rivers as well as clastic sediments deposited along the ocean margins decrease linearly with the bedrock ages of river drainage basins and large-scale continental drainage regions, as determined from digital geologic maps. These correlations are used to calculate the present-day input of dissolved Sr (4.7 × 1010 mol yr−1, 87Sr/86Sr of ∼0.7111) and particulate Nd isotopes (ɛNd of approximately −7.3 ± 2.2) to the oceans. The fact that the regionally averaged ɛNd of the global detrital input to the global coastal ocean is identical to globally averaged seawater (ɛNd of −7.2 ± 0.5) lends credence to the importance of “boundary exchange” for the Nd isotope composition of water masses. Regional biases in source areas of detrital matter and runoff are reflected by the observation that the average age of global bedrock, weighted according to the riverine suspended sediment flux, is significantly younger (∼336 Myr) than the age of global bedrock weighted according to water discharge (394 Myr), which is younger than the average bedrock age of the nonglaciated, exorheic portions of the continents (453 Myr). The observation that the bedrock age weighted according to Sr flux is younger (339 Myr) than that weighted according to water flux reflects the disproportionate contribution from young sedimentary and volcanic rocks to the dissolved Sr load. Neither the isotope composition of the dissolved nor the particulate continental inputs to the ocean provide unbiased perspectives of the lithologic makeup of the Earths surface. Temporal changes in bedrock geology as well as the shifting focal points of physical erosion and water discharge will undoubtedly have exerted strong controls on temporal and spatial changes in the isotope chemistry of past global runoff and thus seawater.


Tellus A | 2014

Prior history of Mistral and Tramontane winds modulates heavy precipitation events in southern France

Ségolène Berthou; Sylvain Mailler; Philippe Drobinski; Thomas Arsouze; Sophie Bastin; Karine Béranger; Cindy Lebeaupin-Brossier

Heavy precipitation events (HPEs) are frequent in southern France in autumn. An HPE results from landward transport of low-level moisture from the Western Mediterranean: large potential instability is then released by local convergence and/or orography. In the upstream zone, the sea surface temperature (SST) undergoes significant variations at the submonthly time scale primarily driven by episodic highly energetic events of relatively cold outflows from the neighbouring mountain ranges (the Mistral and Tramontane winds). Here, we study the HPE of 22–23 September 1994 which is preceded by a strong SST cooling due to the Mistral and Tramontane winds. This case confirms that the location of the precipitation is modulated by the SST in the upstream zone. In fact, changes in latent and sensible heat fluxes due to SST changes induce pressure and stratification changes which affect the low-level dynamics. Using three companion regional climate simulations running from 1989 to 2009, this article statistically shows that anomalies in the HPEs significantly correlate with the SST anomalies in the Western Mediterranean, and hence with the prior history of Mistral and Tramontane winds. In such cases, the role of the ocean as an integrator of the effect of past wind events over one or several weeks does indeed have an impact on HPEs in southern France.


Journal of Geophysical Research | 2016

Dense water formation in the north‐western Mediterranean area during HyMeX‐SOP2 in 1/36° ocean simulations: Sensitivity to initial conditions

Fabien Léger; Cindy Lebeaupin Brossier; Hervé Giordani; Thomas Arsouze; Jonathan Beuvier; Marie-Noëlle Bouin; Emilie Bresson; Véronique Ducrocq; Nadia Fourrié; Mathieu Nuret

The north-western Mediterranean Sea is a key location where intense air-sea exchanges occur in autumn and winter. The succession of strong mistral and tramontane situations, leading to significant evaporation and ocean heat loss, is well known as the controlling factor in the dense water formation (DWF) with deep convection episodes. During HyMeX-SOP2 (1 February to 15 March 2013), several platforms sampled the area in order to document DWF and air-sea exchanges. This study investigates the ability of the NEMO-WMED36 ocean model (1/36°-resolution), driven in surface by the hourly air-sea fluxes from the AROME-WMED forecasts (2.5 km resolution), to represent DWF during HyMeX-SOP2 and focuses on the sensitivity to initial conditions. After a short evaluation of the atmospheric forcing, the high-resolution oceanic simulations using three different data sets as initial and boundary conditions are compared to observations collected during the field campaign. It evidences that using regional model outputs may lead to unrealistic thermohaline characteristics for the intermediate and deep waters, which degrade the simulated new dense water formed. Using ocean analyses built from observations, permits to obtain more realistic characteristics of the Western Mediterranean dense water. However, a low stratification favors an overestimation of the convective area and of the DWF rate. The DWF chronology is also impacted. Nevertheless, in every run, SOP2 is characterized by the production of water denser than 29.11 kg m−3 with a peak during the strong mistral event of 23–25 February followed by a period of restratification, before a last event of bottom convection on 13–15 March.


Journal of Geophysical Research | 2014

Long‐lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities

Nadia Mkhinini; Andre Louis Santi Coimbra; Alexandre Stegner; Thomas Arsouze; Isabelle Taupier-Letage; Karine Béranger

We analyzed 20 years of AVISO data set to detect and characterize long-lived eddies, which stay coherent more than 6 months, in the eastern Mediterranean Sea. In order to process the coarse gridded (1=8) AVISO geostrophic velocity fields, we optimized a geometrical eddy detection algorithm. Our main contribution was to implement a new procedure based on the computation of the Local and Normalized Angular Momentum (LNAM) to identify the positions of the eddy centers and to follow their Lagrangian tra-jectories. We verify on two mesoscale anticyclones, sampled during the EGYPT campaign in 2006, that our methodology provides a correct estimation of the eddy centers and their characteristic radius corresponding to the maximal tangential velocity. Our analysis reveals the dominance of anticyclones among the long-lived eddies. This cyclone-anticyclone asymmetry appears to be much more pronounced in eastern Mediter-ranean Sea than in the global ocean. Then we focus our study on the formation areas of long-lived eddies. We confirm that the generations of the Ierapetra and the Pelops anticyclones are recurrent and correlated to the Etesian wind forcing. We also provide some evidence that the smaller cyclonic eddies formed at the southwest of Crete may also be induced by the same wind forcing. On the other hand, the generation of long-lived eddies along the Libyo-Egyptian coast are not correlated to the local wind-stress curl but surprisingly , their initial formation points follow the Herodotus Trough bathymetry. Moreover, we identify a new formation area, not discussed before, along the curved shelf off Benghazi.


Journal of Geophysical Research | 2016

The Sicily Channel surface circulation revisited using a neural clustering analysis of a high‐resolution simulation

Manel Jouini; Karine Béranger; Thomas Arsouze; Jonathan Beuvier; Sylvie Thiria; Michel Crépon; Isabelle Taupier-Letage

The Sicily Channel surface circulation is investigated by analyzing the outputs of a high-resolution ocean model MED12 forced during 46 years by the ARPERA atmospheric fields. Applying a neural network classifier, we show that the surface circulation in the Sicily Channel can be decomposed into 8 modes characterizing the major patterns of that circulation, particularly the Algerian Current separation at the entrance to the Sicily Channel, the features of the Atlantic Tunisian Current and of the Atlantic Ionian Stream. These modes reflect the variability of the circulation in space and time at seasonal and inter-annual scales. Some modes preferably occur in winter whilst others are characteristic of summer. The mode sequence presents an inter-annual variability in good agreement with observations. The topography of the Sicily Channel sill plays a major role in steering the circulation. In particular the summer upwelling along the southern coast of Sicily, which is present in several modes, could be explained by a large-scale density forcing. A combination of barotropic/baroclinic double Kelvin waves generated on both sides of the sill provides a mechanism for explaining the complexity of the surface circulation advecting the surface waters from the Western Mediterranean toward the Eastern Mediterranean, the most salient features of which are the Atlantic Tunisian Current, the Atlantic Ionian Stream and the Tyrrhenian Sicilian Current which is a new feature highlighted by the present study.


Journal of Geophysical Research | 2017

Impact of the Mesoscale Dynamics on Ocean Deep Convection: The 2012–2013 Case Study in the Northwestern Mediterranean Sea

Robin Waldman; Marine Herrmann; Samuel Somot; Thomas Arsouze; Rachid Benshila; Anthony Bosse; Jerome Chanut; Hervé Giordani; Florence Sevault; Pierre Testor

Winter 2012–2013 was a particularly intense and well‐observed Dense Water Formation (DWF) event in the Northwestern Mediterranean Sea. In this study, we investigate the impact of the mesoscale dynamics on DWF. We perform two perturbed initial state simulation ensembles from summer 2012 to 2013, respectively, mesoscale‐permitting and mesoscale‐resolving, with the AGRIF refinement tool in the Mediterranean configuration NEMOMED12. The mean impact of the mesoscale on DWF occurs mainly through the high‐resolution physics and not the high‐resolution bathymetry. This impact is shown to be modest: the mesoscale does not modify the chronology of the deep convective winter nor the volume of dense waters formed. It however impacts the location of the mixed patch by reducing its extent to the west of the North Balearic Front and by increasing it along the Northern Current, in better agreement with observations. The maximum mixed patch volume is significantly reduced from 5.7 ± 0.2 to 4.2 ± 0.6 × 1013 m3</sup<. Finally, the spring restratification volume is more realistic and enhanced from 1.4 ± 0.2 to 1.8 ± 0.2 × 1013 m3 by the mesoscale. We also address the mesoscale impact on the ocean intrinsic variability by performing perturbed initial state ensemble simulations. The mesoscale enhances the intrinsic variability of the deep convection geography, with most of the mixed patch area impacted by intrinsic variability. The DWF volume has a low intrinsic variability but it is increased by 2–3 times with the mesoscale. We relate it to a dramatic increase of the Gulf of Lions eddy kinetic energy from 5.0 ± 0.6 to 17.3 ± 1.5 cm2/s2, in remarkable agreement with observations.


Climate Dynamics | 2018

Improving sea level simulation in Mediterranean regional climate models

Fanny Adloff; Gabriel Jordá; Samuel Somot; Florence Sevault; Thomas Arsouze; Benoit Meyssignac; Laurent Li; Serge Planton

For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.


Climate Dynamics | 2018

North-western Mediterranean sea-breeze circulation in a regional climate system model

Philippe Drobinski; Sophie Bastin; Thomas Arsouze; Karine Béranger; Emmanouil Flaounas; Marc Stéfanon

In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.


Journal of Atmospheric and Oceanic Technology | 2017

Angular Momentum Eddy Detection and Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation

Briac Le Vu; Alexandre Stegner; Thomas Arsouze

AbstractAutomated methods are important for the identification of mesoscale eddies in the large volume of oceanic data provided by altimetric measurements and numerical simulations. This paper pres...

Collaboration


Dive into the Thomas Arsouze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Dutay

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Jordá

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge