Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Le Loc'h is active.

Publication


Featured researches published by François Le Loc'h.


Global Change Biology | 2014

From projected species distribution to food‐web structure under climate change

Camille Albouy; Laure Velez; Marta Coll; Francesco Colloca; François Le Loc'h; David Mouillot; Dominique Gravel

Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.


Ecology | 2015

FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data

Camille Albouy; Frida Ben Rais Lasram; Laure Velez; François Guilhaumon; Christine N. Meynard; Séverine Boyer; Laura Benestan; Nicolas Mouquet; Emmanuel J. P. Douzery; Roland Aznar; Marc Troussellier; Samuel Somot; Fabien Leprieur; François Le Loc'h; David Mouillot

The FishMed database provides traits, phylogeny, current and projected species distribution of Mediterranean fishes, and associated sea surface temperature (SST) from the regional oceanic model NEMOMED8. Data for the current geographical distributions of 635 Mediterranean fish species were compiled from a published expert knowledge atlas of fishes of the northern Atlantic and the Mediterranean (FNAM) edited between 1984 and 1986 and from an updated exotic fish species list. Two future sets of projected species distributions were obtained for the middle and end of the 21st century by using an ensemble forecasting approach for 288 coastal Mediterranean fish species based on SST according to the IPPC/SRES A2 scenario implemented with the Mediterranean climatic model NEMOMED8. The functional part of the database encompasses 12 biological and ecological traits (maximal and common lengths, vertical distribution, habitat, migration type, mode of reproduction, sex shift, semelparity, diet type (larvae and adults), social behavior, species origin, and depth) for the 635 fish species. To build the phylogeny we inferred the timing and geographic origins of Mediterranean teleost species diversity using nucleotide sequences collected from GenBank including 62% of Mediterranean teleost species plus nine outgroups. Maximum likelihood Bayesian phylogenetic and dating analyses were calibrated using 20 fossil species. An additional 124 fish species were grafted onto the chronogram according to their taxonomic affinity to obtain a phylogenetic tree including 498 species. Finally we also present the associated SST data for the observed period (1961–1980) and for the middle (2040–2059) and the end of the 21st century (2080–2099) obtained from NEMOMED8 according to the IPCC A2 scenario. The FishMed database might be of interest in the context of global anthropogenic changes as coastal Mediterranean ecosystems are currently recognized as one of the most impacted ecosystems on earth.


PLOS ONE | 2015

Modeling of Beta Diversity in Tunisian Waters: Predictions Using Generalized Dissimilarity Modeling and Bioregionalisation Using Fuzzy Clustering

Frida Ben Rais Lasram; Tarek Hattab; Ghassen Halouani; Mohamed Salah Romdhane; François Le Loc'h

Spatial patterns of beta diversity are a major focus of ecology. They can be especially valuable in conservation planning. In this study, we used a generalized dissimilarity modeling approach to analyze and predict the spatial patterns of beta diversity for commercially exploited, demersal marine species assemblages along the Tunisian coasts. For this study, we used a presence/absence dataset which included information on 174 species (invertebrates and fishes) and 9 environmental variables. We first performed the modeling analyses and assessed beta diversity using the turnover component of the Jaccard’s dissimilarity index. We then performed nonmetric multidimensional scaling to map predicted beta diversity. To delineate the biogeographical regions, we used fuzzy cluster analysis. Finally, we also identified a set of indicator species which characterized the species assemblages in each identified biogeographical region. The predicted beta diversity map revealed two patterns: an inshore-offshore gradient and a south-north latitudinal gradient. Three biogeographical regions were identified and 14 indicator species. These results constitute a first contribution of the bioregionalisation of the Tunisian waters and highlight the issues associated with current fisheries management zones and conservation strategies. Results could be useful to follow an Ecosystem Based Management approach by proposing an objective spatial partitioning of the Tunisian waters. This partitioning could be used to prioritize the adjustment of the actual fisheries management entities, identify current data gaps, inform future scientific surveys and improve current MPA network.


Science of The Total Environment | 2016

Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses

Gaël Le Croizier; Gauthier Schaal; Régis Gallon; Massal Fall; Fabienne Le Grand; Jean-Marie Munaron; Marie-Laure Rouget; Eric Machu; François Le Loc'h; Raymond Laë; Luis Tito de Morais

The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology.


Ecology and Evolution | 2017

Assessing the relationships between phylogenetic and functional singularities in sharks (Chondrichthyes)

Marie Cachera; François Le Loc'h

Abstract The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.


Science of The Total Environment | 2018

Environmental life cycle assessment of seafood production: A case study of trawler catches in Tunisia

Khaled Abdou; Didier Gascuel; Joël Aubin; Mohamed Salah Romdhane; Frida Ben Rais Lasram; François Le Loc'h

The Gulf of Gabes is one of the most productive fishery areas in the southern Mediterranean Sea. It is archetypal of an ecosystem in which the effects of fisheries are most pronounced. Demersal trawling is the main fishing activity in the Gulf of Gabes. Life Cycle Assessment (LCA) was applied to assess the environmental performance landing 1t of seafood with wooden demersal trawlers in the Gulf of Gabes. Impact categories included in the study were abiotic depletion potential (ADP), acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ozone depletion potential (ODP), photochemical oxidant formation potential (POFP), human toxicity potential (HTP), marine eco-toxicity potential (METP), terrestrial eco-toxicity potential (TETP), land occupation potential (LOP), and total cumulative energy demand (TCED). Demersal trawlers were classified based on their impact intensity. Results showed that 70% of the vessels had relatively low impacts. Impact intensity was proportional to the amount of fuel consumed to land 1t of seafood. Ships that fished less had the highest impacts per ton, due to lower fishing effort and catch per unit effort. This is likely to typify vessels that target highly valuable species such as shrimp. Onboard vessel activities contributed most to different environmental impacts (AP, EP, GWP and POFP), related to the high energy use of this fishery. Several impacts (ADP, ODP, METP, LOP and TCED) were associated mainly with fuel and lubricating oil production. Therefore, improvements must focus on minimizing fuel consumption. LCA is a valuable tool for assessing how to increase environmental sustainability of demersal trawling and it can help stakeholders identify the main operational issues that require improvement.


Science of The Total Environment | 2019

Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish

Gaël Le Croizier; Gauthier Schaal; David Point; François Le Loc'h; Eric Machu; Massal Fall; Jean-Marie Munaron; Aurélien Boyé; Pierre Walter; Raymond Laë; Luis Tito de Morais

Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrient inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.


Journal of Experimental Marine Biology and Ecology | 2007

Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues

N. Bodin; François Le Loc'h; Christian Hily


Canadian Journal of Fisheries and Aquatic Sciences | 2005

Stable carbon and nitrogen isotope analysis of Nephrops norvegicus/Merluccius merluccius fishing grounds in the Bay of Biscay (Northeast Atlantic)

François Le Loc'h; Christian Hily


Journal of Sea Research | 2008

Seasonal variability of living benthic foraminifera from the outer continental shelf of the Bay of Biscay

Gérald Duchemin; Frans Jorissen; François Le Loc'h; Françoise Andrieux-Loyer; Christian Hily; Gérard Thouzeau

Collaboration


Dive into the François Le Loc'h's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille Albouy

Université du Québec à Rimouski

View shared research outputs
Top Co-Authors

Avatar

Fabien Leprieur

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Tarek Hattab

University of Picardie Jules Verne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laure Velez

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

David Mouillot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Coll

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge