Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where François Lux is active.

Publication


Featured researches published by François Lux.


ACS Nano | 2011

Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles.

Géraldine Le Duc; Imen Miladi; Christophe Alric; Pierre Mowat; Elke Bräuer-Krisch; Audrey Bouchet; Enam Khalil; Claire Billotey; Marc Janier; François Lux; Thierry Epicier; Pascal Perriat; Stéphane Roux; Olivier Tillement

Ultrasmall gadolinium-based nanoparticles (GBNs) induce both a positive contrast for magnetic resonance imaging and a radiosentizing effect. The exploitation of these characteristics leads to a greater increase in lifespan of rats bearing brain tumors since the radiosensitizing effect of GBNs can be activated by X-ray microbeams when the gadolinium content is, at the same time, sufficiently high in the tumor and low in the surrounding healthy tissue. GBNs exhibit therefore an interesting potential for image-guided radiotherapy.


Angewandte Chemie | 2011

Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications

François Lux; Anna Mignot; Pierre Mowat; Cédric Louis; Sandrine Dufort; Claire Bernhard; Franck Denat; Frédéric Boschetti; Claire Brunet; Rodolphe Antoine; Philippe Dugourd; Sophie Laurent; Luce Vander Elst; Robert N. Muller; Lucie Sancey; Véronique Josserand; Jean-Luc Coll; Vasile Stupar; Emmanuel L. Barbier; Chantal Rémy; Alexis Broisat; Catherine Ghezzi; Géraldine Le Duc; Stéphane Roux; Pascal Perriat; Olivier Tillement

Ultrasmall but multifunctional: Rigid imaging particles that are smaller than 5 nm in size can be obtained in a top-down process starting from a core–shell structure (core=gadolinium oxide; shell=polysiloxane). They represent the first multifunctional silica-based particles that are sufficiently small to escape hepatic clearance and enable animal imaging by four complementary techniques


BMC Medicine | 2013

Slow CCL2-dependent translocation of biopersistent particles from muscle to brain

Zakir Khan; Christophe Combadière; François-Jérôme Authier; Valérie Itier; François Lux; Christopher Exley; Meriem Mahrouf-Yorgov; Xavier Decrouy; Philippe Moretto; Olivier Tillement; Romain K. Gherardi; Josette Cadusseau

BackgroundLong-term biodistribution of nanomaterials used in medicine is largely unknown. This is the case for alum, the most widely used vaccine adjuvant, which is a nanocrystalline compound spontaneously forming micron/submicron-sized agglomerates. Although generally well tolerated, alum is occasionally detected within monocyte-lineage cells long after immunization in presumably susceptible individuals with systemic/neurologic manifestations or autoimmune (inflammatory) syndrome induced by adjuvants (ASIA).MethodsOn the grounds of preliminary investigations in 252 patients with alum-associated ASIA showing both a selective increase of circulating CCL2, the major monocyte chemoattractant, and a variation in the CCL2 gene, we designed mouse experiments to assess biodistribution of vaccine-derived aluminum and of alum-particle fluorescent surrogates injected in muscle. Aluminum was detected in tissues by Morin stain and particle induced X-ray emission) (PIXE) Both 500 nm fluorescent latex beads and vaccine alum agglomerates-sized nanohybrids (Al-Rho) were used.ResultsIntramuscular injection of alum-containing vaccine was associated with the appearance of aluminum deposits in distant organs, such as spleen and brain where they were still detected one year after injection. Both fluorescent materials injected into muscle translocated to draining lymph nodes (DLNs) and thereafter were detected associated with phagocytes in blood and spleen. Particles linearly accumulated in the brain up to the six-month endpoint; they were first found in perivascular CD11b+ cells and then in microglia and other neural cells. DLN ablation dramatically reduced the biodistribution. Cerebral translocation was not observed after direct intravenous injection, but significantly increased in mice with chronically altered blood-brain-barrier. Loss/gain-of-function experiments consistently implicated CCL2 in systemic diffusion of Al-Rho particles captured by monocyte-lineage cells and in their subsequent neurodelivery. Stereotactic particle injection pointed out brain retention as a factor of progressive particle accumulation.ConclusionNanomaterials can be transported by monocyte-lineage cells to DLNs, blood and spleen, and, similarly to HIV, may use CCL2-dependent mechanisms to penetrate the brain. This occurs at a very low rate in normal conditions explaining good overall tolerance of alum despite its strong neurotoxic potential. However, continuously escalating doses of this poorly biodegradable adjuvant in the population may become insidiously unsafe, especially in the case of overimmunization or immature/altered blood brain barrier or high constitutive CCL-2 production.


British Journal of Radiology | 2014

The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

Lucie Sancey; François Lux; Shady Kotb; S Roux; S Dufort; Andrea Bianchi; Y Crémillieux; P Fries; J-L Coll; Claire Rodriguez-Lafrasse; M Janier; M Dutreix; Muriel Barberi-Heyob; F Boschetti; Franck Denat; C Louis; Erika Porcel; S. Lacombe; G Le Duc; E Deutsch; J-L Perfettini; Alexandre Detappe; Camille Verry; R Berbeco; Karl T. Butterworth; Stephen J. McMahon; Kevin Prise; Pascal Perriat; Olivier Tillement

A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.


Chemistry: A European Journal | 2013

A Top‐Down Synthesis Route to Ultrasmall Multifunctional Gd‐Based Silica Nanoparticles for Theranostic Applications

Anna Mignot; Charles Truillet; François Lux; Lucie Sancey; Cédric Louis; Franck Denat; Frédéric Boschetti; Laura Bocher; Alexandre Gloter; Odile Stéphan; Rodolphe Antoine; Philippe Dugourd; Dominique Luneau; Ghenadie Novitchi; L. C. Figueiredo; P.C. Morais; Laurent Bonneviot; Belen Albela; François Ribot; Luk Van Lokeren; Isabelle Déchamps-Olivier; Françoise Chuburu; Gilles Lemercier; Christian L. Villiers; Patrice N. Marche; Géraldine Le Duc; Stéphane Roux; Olivier Tillement; Pascal Perriat

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1)  mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logβ110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


Small | 2014

The in vivo radiosensitizing effect of gold nanoparticles based MRI contrast agents

Imen Miladi; Christophe Alric; Sandrine Dufort; Pierre Mowat; Aurélie Dutour; Céline A. Mandon; Gautier Laurent; Elke Bräuer-Krisch; Nirmitha I. Herath; Jean-Luc Coll; Marie Dutreix; François Lux; Rana Bazzi; Claire Billotey; Marc Janier; Pascal Perriat; Géraldine Le Duc; Stéphane Roux; Olivier Tillement

Owing to the high atomic number (Z) of gold element, the gold nanoparticles appear as very promising radiosensitizing agents. This character can be exploited for improving the selectivity of radiotherapy. However, such an improvement is possible only if irradiation is performed when the gold content is high in the tumor and low in the surrounding healthy tissue. As a result, the beneficial action of irradiation (the eradication of the tumor) should occur while the deleterious side effects of radiotherapy should be limited by sparing the healthy tissue. The location of the radiosensitizers is therefore required to initiate the radiotherapy. Designing gold nanoparticles for monitoring their distribution by magnetic resonance imaging (MRI) is an asset due to the high resolution of MRI which permits the accurate location of particles and therefore the determination of the optimal time for the irradiation. We recently demonstrated that ultrasmall gold nanoparticles coated by gadolinium chelates (Au@DTDTPA-Gd) can be followed up by MRI after intravenous injection. Herein, Au@DTDTPA and Au@DTDTPA-Gd were prepared in order to evaluate their potential for radiosensitization. Comet assays and in vivo experiments suggest that these particles appear well suited for improving the selectivity of the radiotherapy. The dose which is used for inducing similar levels of DNA alteration is divided by two when cells are incubated with the gold nanoparticles prior to the irradiation. Moreover, the increase in the lifespan of tumor bearing rats is more important when the irradiation is performed after the injection of the gold nanoparticles. In the case of treatment of rats with a brain tumor (9L gliosarcoma, a radio-resistant tumor in a radiosensitive organ), the delay between the intravenous injection and the irradiation was determined by MRI.


ACS Nano | 2015

Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection.

Lucie Sancey; Shady Kotb; Charles Truillet; Florence Appaix; Arthur Marais; Eloise Thomas; Boudewijn van der Sanden; Jean-Philippe Klein; Blandine Laurent; Michèle Cottier; Rodolphe Antoine; Philippe Dugourd; G. Panczer; François Lux; Pascal Perriat; Vincent Motto-Ros; Olivier Tillement

We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.


Scientific Reports | 2015

Laser spectrometry for multi-elemental imaging of biological tissues.

Lucie Sancey; V. Motto-Ros; B. Busser; Shady Kotb; J. M. Benoit; A. Piednoir; François Lux; Olivier Tillement; G. Panczer; J. Yu

An increasing interest has arisen in research focused on metallic and organic ions that play crucial roles in both physiological and pathological metabolic processes. Current methods for the observation of trace elements in biological tissues at microscopic spatial resolution often require equipment with high complexity. We demonstrate a novel approach with an all-optical design and multi-elemental scanning imaging, which is unique among methods of elemental detection because of its full compatibility with standard optical microscopy. This approach is based on laser-induced breakdown spectroscopy (LIBS), which allows the elements in a tissue sample to be directly detected and quantified under atmospheric pressure. We successfully applied this method to murine kidneys with 10 µm resolution and a ppm-level detection limit to analyze the renal clearance of nanoparticles. These results offer new insight into the use of laser spectrometry in biomedical applications in the field of label-free elemental mapping of biological tissues.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Gadolinium-based nanoparticles to improve the hadrontherapy performances

Erika Porcel; Olivier Tillement; François Lux; Pierre Mowat; Noriko Usami; Katsumi Kobayashi; Yoshiya Furusawa; Claude Le Sech; Sha Li; S. Lacombe

UNLABELLED Nanomedicine is proposed as a novel strategy to improve the performance of radiotherapy. High-Z nanoparticles are known to enhance the effects of ionizing radiation. Recently, multimodal nanoparticles such as gadolinium-based nanoagents were proposed to amplify the effects of x-rays and g-rays and to improve MRI diagnosis. For tumors sited in sensitive tissues, childhood cases and radioresistant cancers, hadrontherapy is considered superior to x-rays and g-rays. Hadrontherapy, based on fast ion radiation, has the advantage of avoiding damage to the tissues behind the tumor; however, the damage caused in front of the tumor is its major limitation. Here, we demonstrate that multimodal gadolinium-based nanoparticles amplify cell death with fast ions used as radiation. Molecular scale experiments give insights into the mechanisms underlying the amplification of radiation effects. This proof-of-concept opens up novel perspectives for multimodal nanomedicine in hadrontherapy, ultimately reducing negative radiation effects in healthy tissues in front of the tumor. FROM THE CLINICAL EDITOR Gadolinium-chelating polysiloxane nanoparticles were previously reported to amplify the anti-tumor effects of x-rays and g-rays and to serve as MRI contrast agents. Fast ion radiation-based hadrontherapy avoids damage to the tissues behind the tumor, with a major limitation of tissue damage in front of the tumor. This study demonstrates a potential role for the above nanoagents in optimizing hadrontherapy with preventive effects in healthy tissue and amplified cell death in the tumor.


Theranostics | 2012

Multifunctional Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI

Hamanou Benachour; Aymeric Sève; Thierry Bastogne; Céline Frochot; Régis Vanderesse; Jordane Jasniewski; Imen Miladi; Claire Billotey; Olivier Tillement; François Lux; Muriel Barberi-Heyob

Photodynamic therapy (PDT) is an emerging theranostic modality for various cancer as well as non-cancer diseases. Its efficiency is mainly based on a selective accumulation of PDT and imaging agents in tumor tissue. The vascular effect is widely accepted to play a major role in tumor eradication by PDT. To promote this vascular effect, we previously demonstrated the interest of using an active- targeting strategy targeting neuropilin-1 (NRP-1), mainly over-expressed by tumor angiogenic vessels. For an integrated vascular-targeted PDT with magnetic resonance imaging (MRI) of cancer, we developed multifunctional gadolinium-based nanoparticles consisting of a surface-localized tumor vasculature targeting NRP-1 peptide and polysiloxane nanoparticles with gadolinium chelated by DOTA derivatives on the surface and a chlorin as photosensitizer. The nanoparticles were surface-functionalized with hydrophilic DOTA chelates and also used as a scaffold for the targeting peptide grafting. In vitro investigations demonstrated the ability of multifunctional nanoparticles to preserve the photophysical properties of the encapsulated photosensitizer and to confer photosensitivity to MDA-MB-231 cancer cells related to photosensitizer concentration and light dose. Using binding test, we revealed the ability of peptide-functionalized nanoparticles to target NRP-1 recombinant protein. Importantly, after intravenous injection of the multifunctional nanoparticles in rats bearing intracranial U87 glioblastoma, a positive MRI contrast enhancement was specifically observed in tumor tissue. Real-time MRI analysis revealed the ability of the targeting peptide to confer specific intratumoral retention of the multifunctional nanoparticles.

Collaboration


Dive into the François Lux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Perriat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Roux

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Olivier Tillement

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Bianchi

Université Bordeaux Segalen

View shared research outputs
Top Co-Authors

Avatar

Yannick Crémillieux

Université Bordeaux Segalen

View shared research outputs
Top Co-Authors

Avatar

Géraldine Le Duc

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge