Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lucie Sancey is active.

Publication


Featured researches published by Lucie Sancey.


Angewandte Chemie | 2011

Ultrasmall Rigid Particles as Multimodal Probes for Medical Applications

François Lux; Anna Mignot; Pierre Mowat; Cédric Louis; Sandrine Dufort; Claire Bernhard; Franck Denat; Frédéric Boschetti; Claire Brunet; Rodolphe Antoine; Philippe Dugourd; Sophie Laurent; Luce Vander Elst; Robert N. Muller; Lucie Sancey; Véronique Josserand; Jean-Luc Coll; Vasile Stupar; Emmanuel L. Barbier; Chantal Rémy; Alexis Broisat; Catherine Ghezzi; Géraldine Le Duc; Stéphane Roux; Pascal Perriat; Olivier Tillement

Ultrasmall but multifunctional: Rigid imaging particles that are smaller than 5 nm in size can be obtained in a top-down process starting from a core–shell structure (core=gadolinium oxide; shell=polysiloxane). They represent the first multifunctional silica-based particles that are sufficiently small to escape hepatic clearance and enable animal imaging by four complementary techniques


Biochimica et Biophysica Acta | 2011

The multiple roles of amphiregulin in human cancer.

Benoit Busser; Lucie Sancey; Elisabeth Brambilla; Jean-Luc Coll; Amandine Hurbin

Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.


British Journal of Radiology | 2014

The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy

Lucie Sancey; François Lux; Shady Kotb; S Roux; S Dufort; Andrea Bianchi; Y Crémillieux; P Fries; J-L Coll; Claire Rodriguez-Lafrasse; M Janier; M Dutreix; Muriel Barberi-Heyob; F Boschetti; Franck Denat; C Louis; Erika Porcel; S. Lacombe; G Le Duc; E Deutsch; J-L Perfettini; Alexandre Detappe; Camille Verry; R Berbeco; Karl T. Butterworth; Stephen J. McMahon; Kevin Prise; Pascal Perriat; Olivier Tillement

A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.


Chemistry: A European Journal | 2013

A Top‐Down Synthesis Route to Ultrasmall Multifunctional Gd‐Based Silica Nanoparticles for Theranostic Applications

Anna Mignot; Charles Truillet; François Lux; Lucie Sancey; Cédric Louis; Franck Denat; Frédéric Boschetti; Laura Bocher; Alexandre Gloter; Odile Stéphan; Rodolphe Antoine; Philippe Dugourd; Dominique Luneau; Ghenadie Novitchi; L. C. Figueiredo; P.C. Morais; Laurent Bonneviot; Belen Albela; François Ribot; Luk Van Lokeren; Isabelle Déchamps-Olivier; Françoise Chuburu; Gilles Lemercier; Christian L. Villiers; Patrice N. Marche; Géraldine Le Duc; Stéphane Roux; Olivier Tillement; Pascal Perriat

New, ultrasmall nanoparticles with sizes below 5 nm have been obtained. These small rigid platforms (SRP) are composed of a polysiloxane matrix with DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric anhydride-4,7,10-triacetic acid)-Gd(3+) chelates on their surface. They have been synthesised by an original top-down process: 1) formation of a gadolinium oxide Gd2O3 core, 2) encapsulation in a polysiloxane shell grafted with DOTAGA ligands, 3) dissolution of the gadolinium oxide core due to chelation of Gd(3+) by DOTAGA ligands and 4) polysiloxane fragmentation. These nanoparticles have been fully characterised using photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), a superconducting quantum interference device (SQUID) and electron paramagnetic resonance (EPR) to demonstrate the dissolution of the oxide core and by inductively coupled plasma mass spectrometry (ICP-MS), mass spectrometry, fluorescence spectroscopy, (29)Si solid-state NMR, (1)H NMR and diffusion ordered spectroscopy (DOSY) to determine the nanoparticle composition. Relaxivity measurements gave a longitudinal relaxivity r1 of 11.9 s(-1)  mM(-1) per Gd at 60 MHz. Finally, potentiometric titrations showed that Gd(3+) is strongly chelated to DOTAGA (complexation constant logβ110 =24.78) and cellular tests confirmed the that nanoconstructs had a very low toxicity. Moreover, SRPs are excreted from the body by renal clearance. Their efficiency as contrast agents for MRI has been proved and they are promising candidates as sensitising agents for image-guided radiotherapy.


ACS Nano | 2015

Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection.

Lucie Sancey; Shady Kotb; Charles Truillet; Florence Appaix; Arthur Marais; Eloise Thomas; Boudewijn van der Sanden; Jean-Philippe Klein; Blandine Laurent; Michèle Cottier; Rodolphe Antoine; Philippe Dugourd; G. Panczer; François Lux; Pascal Perriat; Vincent Motto-Ros; Olivier Tillement

We previously reported the synthesis of gadolinium-based nanoparticles (NPs) denoted AGuIX (activation and guiding of irradiation by X-ray) NPs and demonstrated their potential as an MRI contrast agent and their efficacy as radiosensitizing particles during X-ray cancer treatment. Here we focus on the elimination kinetics of AGuIX NPs from the subcellular to whole-organ scale using original and complementary methods such as laser-induced breakdown spectroscopy (LIBS), intravital two-photon microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), and electrospray ionization mass spectrometry (ESI-MS). This combination of techniques allows the exact mechanism of AGuIX NPs elimination to be elucidated, including their retention in proximal tubules and their excretion as degraded or native NPs. Finally, we demonstrated that systemic AGuIX NP administration induced moderate and transient effects on renal function. These results provide useful and promising preclinical information concerning the safety of theranostic AGuIX NPs.


Biochimica et Biophysica Acta | 2010

Optical small animal imaging in the drug discovery process.

Sandrine Dufort; Lucie Sancey; Christian Wenk; Véronique Josserand; Jean-Luc Coll

Molecular imaging of tumors in preclinical models is of the utmost importance for developing innovative cancer treatments. This field is moving extremely rapidly, with recent advances in optical imaging technologies and sophisticated molecular probes for in vivo imaging. The aim of this review is to provide a succinct overview of the imaging modalities available for rodents and with focus on describing optical probes for cancer imaging.


Scientific Reports | 2015

Laser spectrometry for multi-elemental imaging of biological tissues.

Lucie Sancey; V. Motto-Ros; B. Busser; Shady Kotb; J. M. Benoit; A. Piednoir; François Lux; Olivier Tillement; G. Panczer; J. Yu

An increasing interest has arisen in research focused on metallic and organic ions that play crucial roles in both physiological and pathological metabolic processes. Current methods for the observation of trace elements in biological tissues at microscopic spatial resolution often require equipment with high complexity. We demonstrate a novel approach with an all-optical design and multi-elemental scanning imaging, which is unique among methods of elemental detection because of its full compatibility with standard optical microscopy. This approach is based on laser-induced breakdown spectroscopy (LIBS), which allows the elements in a tissue sample to be directly detected and quantified under atmospheric pressure. We successfully applied this method to murine kidneys with 10 µm resolution and a ppm-level detection limit to analyze the renal clearance of nanoparticles. These results offer new insight into the use of laser spectrometry in biomedical applications in the field of label-free elemental mapping of biological tissues.


Nanomedicine: Nanotechnology, Biology and Medicine | 2013

Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models

Samuli Hirsjärvi; Sandrine Dufort; Julien Gravier; Isabelle Texier; Qiao Yan; Jérôme Bibette; Lucie Sancey; Véronique Josserand; Catherine Passirani; Jean-Pierre Benoit; Jean-Luc Coll

UNLABELLED Lipid nanocapsules (LNCs) and lipid nanoemulsions (LNEs) are biomimetic synthetic nanocarriers. Their in vitro and in vivo performance was evaluated as a function of their size (25, 50 and 100 nm) and the surface PEG chain length. Analysis methods included complement activation test, particle uptake in macrophage and HEK293(β3) cells and biodistribution studies with tumor-grafted mice by fluorescence imaging. A particular attention was paid to keep the concentration of each nanocarrier and to the amount of fluorescent dye in comparable conditions between the in vitro and in vivo studies. Under these conditions, no significant differences were found among the three tested particle sizes and the two nanocarrier types. Longer PEG chains on the LNE surface provided better stealth properties, whereas PEG modification on the LNC formulations inhibited the production of stable nanocarriers. Passive accumulation of LNCs and LNEs in different tumor types depended on the degree of tumor vascularization. FROM THE CLINICAL EDITOR This study of lipid nanocapsules and lipid nanoemulsions compares their vitro and in vivo performance as a function of size and surface PEG chain length, demonstrating no significant difference among the tested particle sizes. Longer PEG chains on the LNE surface provided better stealth properties, whereas PEG modification on the LNC formulations inhibited the production of stable nanocarriers.


Journal of Cell Science | 2011

Bax-derived membrane-active peptides act as potent and direct inducers of apoptosis in cancer cells

Juan Garcia Valero; Lucie Sancey; Jérôme Kucharczak; Yannis Guillemin; Diana Giménez; Julien Prudent; Germain Gillet; Jesús Salgado; Jean-Luc Coll; Abdel Aouacheria

Although many cancer cells are primed for apoptosis, they usually develop resistance to cell death at several levels. Permeabilization of the outer mitochondrial membrane, which is mediated by proapoptotic Bcl-2 family members such as Bax, is considered as a point of no return for initiating apoptotic cell death. This crucial role has placed Bcl-2 family proteins as recurrent targets for anticancer drug development. Here, we propose and demonstrate a new concept based on minimal active versions of Bax to induce cell death independently of endogenous Bcl-2 proteins. We show that membrane-active segments of Bax can directly induce the release of mitochondria-residing apoptogenic factors and commit tumor cells promptly and irreversibly to caspase-dependent apoptosis. On this basis, we designed a peptide encompassing part of the Bax pore-forming domain, which can target mitochondria, induce cytochrome c release and trigger caspase-dependent apoptosis. Moreover, this Bax-derived ‘poropeptide’ produced effective tumor regression after peritumoral injection in a nude mouse xenograft model. Thus, peptides derived from proteins that form pores in the mitochondrial outer membrane represent novel templates for anticancer agents.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Gadolinium-based nanoparticles for theranostic MRI-radiosensitization

François Lux; Lucie Sancey; Andrea Bianchi; Yannick Crémillieux; Stéphane Roux; Olivier Tillement

A rapid development of gadolinium-based nanoparticles is observed due to their attractive properties as MRI-positive contrast agents. Indeed, they display high relaxivity, adapted biodistribution and passive uptake in the tumor thanks to enhanced permeability and retention effect. In addition to these imaging properties, it has been recently shown that they can act as effective radiosensitizers under different types of irradiation (radiotherapy, neutron therapy or hadron therapy). These new therapeutic modalities pave the way to therapy guided by imaging and to personalized medicine.

Collaboration


Dive into the Lucie Sancey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Boturyn

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Roux

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Géraldine Le Duc

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Dumy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Dumy

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge