Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Françoise Dumortier is active.

Publication


Featured researches published by Françoise Dumortier.


Biotechnology for Biofuels | 2013

Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.

Mekonnen M. Demeke; Heiko Dietz; Yingying Li; Maria R. Foulquié-Moreno; Sarma Mutturi; Sylvie Deprez; Tom Den Abt; Beatriz M. Bonini; Gunnar Lidén; Françoise Dumortier; Alex Verplaetse; Eckhard Boles; Johan M. Thevelein

BackgroundThe production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production.ResultsAn expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate.ConclusionsAn industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.


Applied and Environmental Microbiology | 2002

Aquaporin Expression Correlates with Freeze Tolerance in Baker's Yeast, and Overexpression Improves Freeze Tolerance in Industrial Strains

An Tanghe; Patrick Van Dijck; Françoise Dumortier; Aloys Teunissen; Stefan Hohmann; Johan M. Thevelein

ABSTRACT Little information is available about the precise mechanisms and determinants of freeze resistance in bakers yeast, Saccharomyces cerevisiae. Genomewide gene expression analysis and Northern analysis of different freeze-resistant and freeze-sensitive strains have now revealed a correlation between freeze resistance and the aquaporin genes AQY1 and AQY2. Deletion of these genes in a laboratory strain rendered yeast cells more sensitive to freezing, while overexpression of the respective genes, as well as heterologous expression of the human aquaporin gene hAQP1, improved freeze tolerance. These findings support a role for plasma membrane water transport activity in determination of freeze tolerance in yeast. This appears to be the first clear physiological function identified for microbial aquaporins. We suggest that a rapid, osmotically driven efflux of water during the freezing process reduces intracellular ice crystal formation and resulting cell damage. Aquaporin overexpression also improved maintenance of the viability of industrial yeast strains, both in cell suspensions and in small doughs stored frozen or submitted to freeze-thaw cycles. Furthermore, an aquaporin overexpression transformant could be selected based on its improved freeze-thaw resistance without the need for a selectable marker gene. Since aquaporin overexpression does not seem to affect the growth and fermentation characteristics of yeast, these results open new perspectives for the successful development of freeze-resistant bakers yeast strains for use in frozen dough applications.


Genome Research | 2012

Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis

Steve Swinnen; Kristien Schaerlaekens; Thiago M. Pais; Jürgen Claesen; Georg Hubmann; Yudi Yang; Mekonnen M. Demeke; Maria R. Foulquié-Moreno; Annelies Goovaerts; Kris Souvereyns; Lieven Clement; Françoise Dumortier; Johan M. Thevelein

High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale.


Applied and Environmental Microbiology | 2007

Isolation and Characterization of Brewer's Yeast Variants with Improved Fermentation Performance under High-Gravity Conditions

Lies Blieck; Geert Toye; Françoise Dumortier; Kevin J. Verstrepen; Freddy R. Delvaux; Johan M. Thevelein; Patrick Van Dijck

ABSTRACT To save energy, space, and time, todays breweries make use of high-gravity brewing in which concentrated medium (wort) is fermented, resulting in a product with higher ethanol content. After fermentation, the product is diluted to obtain beer with the desired alcohol content. While economically desirable, the use of wort with an even higher sugar concentration is limited by the inability of brewers yeast (Saccharomyces pastorianus) to efficiently ferment such concentrated medium. Here, we describe a successful strategy to obtain yeast variants with significantly improved fermentation capacity under high-gravity conditions. We isolated better-performing variants of the industrial lager strain CMBS33 by subjecting a pool of UV-induced variants to consecutive rounds of fermentation in very-high-gravity wort (>22° Plato). Two variants (GT336 and GT344) showing faster fermentation rates and/or more-complete attenuation as well as improved viability under high ethanol conditions were identified. The variants displayed the same advantages in a pilot-scale stirred fermenter under high-gravity conditions at 11°C. Microarray analysis identified several genes whose altered expression may be responsible for the superior performance of the variants. The role of some of these candidate genes was confirmed by genetic transformation. Our study shows that proper selection conditions allow the isolation of variants of commercial brewers yeast with superior fermentation characteristics. Moreover, it is the first study to identify genes that affect fermentation performance under high-gravity conditions. The results are of interest to the beer and bioethanol industries, where the use of more-concentrated medium is economically advantageous.


Applied and Environmental Microbiology | 2002

Isolation and Characterization of a Freeze-Tolerant Diploid Derivative of an Industrial Baker's Yeast Strain and Its Use in Frozen Doughs

Aloys Teunissen; Françoise Dumortier; Marie-Françoise Gorwa; Jürgen Bauer; An Tanghe; Annie Loiez; Peter Smet; Patrick Van Dijck; Johan M. Thevelein

ABSTRACT The routine production and storage of frozen doughs are still problematic. Although commercial bakers yeast is highly resistant to environmental stress conditions, it rapidly loses stress resistance during dough preparation due to the initiation of fermentation. As a result, the yeast loses gassing power significantly during storage of frozen doughs. We obtained freeze-tolerant mutants of polyploid industrial strains following screening for survival in doughs prepared with UV-mutagenized yeast and subjected to 200 freeze-thaw cycles. Two strains in the S47 background with a normal growth rate and the best freeze tolerance under laboratory conditions were selected for production in a 20-liter pilot fermentor. Before frozen storage, the AT25 mutant produced on the 20-liter pilot scale had a 10% higher gassing power capacity than the S47 strain, while the opposite was observed for cells produced under laboratory conditions. AT25 also retained more freeze tolerance during the initiation of fermentation in liquid cultures and more gassing power during storage of frozen doughs. Other industrially important properties (yield, growth rate, nitrogen assimilation, and phosphorus content) were very similar. AT25 had only half of the DNA content of S47, and its cell size was much smaller. Several diploid segregants of S47 had freeze tolerances similar to that of AT25 but inferior performance for other properties, while an AT25-derived tetraploid, TAT25, showed only slightly improved freeze tolerance compared to S47. When AT25 was cultured in a 20,000-liter fermentor under industrial conditions, it retained its superior performance and thus appears to be promising for use in frozen dough production. Our results also show that a diploid strain can perform at least as well as a tetraploid strain for commercial bakers yeast production and usage.


Current Genetics | 1995

Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis.

Maria José Neves; Stefan Hohmann; Walter Bell; Françoise Dumortier; Kattie Luyten; José Ramos; Philip Cobbaert; Wim de Koning; Zoya Kaneva; Johan M. Thevelein

The GGS1/TPS1 gene of the yeast Saccharomyces cerevisiae encodes the trehalose-6-phosphate synthase subunit of the trehalose synthase complex. Mutants defective in GGS1/TPS1 have been isolated repeatedly and they showed variable pleiotropic phenotypes, in particular with respect to trehalose content, ability to grow on fermentable sugars, glucose-induced signaling and sporulation capacity. We have introduced the fdp1, cif1, byp1 and glc6 alleles and the ggs1/tps1 deletion into three different wild-type strains, M5, SP1 and W303-1A. This set of strains will aid further studies on the molecular basis of the complex pleiotropic phenotypes of ggs1/tps1 mutants. The phenotypes conferred by specific alleles were clearly dependent on the genetic background and also differed for some of the alleles. Our results show that the lethality caused by single gene deletion in one genetic background can become undetectable in another background. The sporulation defect of ggs1/tps1 diploids was neither due to a deficiency in G1 arrest, nor to the inability to accumulate trehalose. Ggs1/tps1 Δ mutants were very sensitive to glucose and fructose, even in the presence of a 100-fold higher galactose concentration. Fifty-percent inhibition occurred at concentrations similar to the Km values of glucose and fructose transport. The inhibitory effect of glucose in the presence of a large excess of galactose argues against an overactive glycolytic flux as the cause of the growth defect. Deletion of genes of the glucose carrier family shifted the 50% growth inhibition to higher sugar concentrations. This finding allows for a novel approach to estimate the relevance of the many putative glucose carrier genes in S. cerevisiae. We also show that the GGS1/TPS1 gene product is not only required for the transition from respirative to fermentative metabolism but continuously during logarithmic growth on glucose, in spite of the absence of trehalose under such conditions.


PLOS Genetics | 2013

Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

Thiago M. Pais; Maria R. Foulquié-Moreno; Georg Hubmann; Jorge Duitama; Steve Swinnen; Annelies Goovaerts; Yudi Yang; Françoise Dumortier; Johan M. Thevelein

The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance.


PLOS Genetics | 2013

QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing

Yudi Yang; Maria R. Foulquié-Moreno; Lieven Clement; Éva Erdei; An Tanghe; Kristien Schaerlaekens; Françoise Dumortier; Johan M. Thevelein

Revealing QTLs with a minor effect in complex traits remains difficult. Initial strategies had limited success because of interference by major QTLs and epistasis. New strategies focused on eliminating major QTLs in subsequent mapping experiments. Since genetic analysis of superior segregants from natural diploid strains usually also reveals QTLs linked to the inferior parent, we have extended this strategy for minor QTL identification by eliminating QTLs in both parent strains and repeating the QTL mapping with pooled-segregant whole-genome sequence analysis. We first mapped multiple QTLs responsible for high thermotolerance in a natural yeast strain, MUCL28177, compared to the laboratory strain, BY4742. Using single and bulk reciprocal hemizygosity analysis we identified MKT1 and PRP42 as causative genes in QTLs linked to the superior and inferior parent, respectively. We subsequently downgraded both parents by replacing their superior allele with the inferior allele of the other parent. QTL mapping using pooled-segregant whole-genome sequence analysis with the segregants from the cross of the downgraded parents, revealed several new QTLs. We validated the two most-strongly linked new QTLs by identifying NCS2 and SMD2 as causative genes linked to the superior downgraded parent and we found an allele-specific epistatic interaction between PRP42 and SMD2. Interestingly, the related function of PRP42 and SMD2 suggests an important role for RNA processing in high thermotolerance and underscores the relevance of analyzing minor QTLs. Our results show that identification of minor QTLs involved in complex traits can be successfully accomplished by crossing parent strains that have both been downgraded for a single QTL. This novel approach has the advantage of maintaining all relevant genetic diversity as well as enough phenotypic difference between the parent strains for the trait-of-interest and thus maximizes the chances of successfully identifying additional minor QTLs that are relevant for the phenotypic difference between the original parents.


Molecular Microbiology | 1999

A MUTATION IN SACCHAROMYCES CEREVISIAE ADENYLATE CYCLASE, CYR1K1876M, SPECIFICALLY AFFECTS GLUCOSE- AND ACIDIFICATION-INDUCED CAMP SIGNALLING AND NOT THE BASAL CAMP LEVEL

Mieke Vanhalewyn; Françoise Dumortier; Gilda Debast; Sonia Colombo; Pingsheng Ma; Joris Winderickx; Patrick Van Dijck; Johan M. Thevelein

In the yeast Saccharomyces cerevisiae, the addition of glucose to derepressed cells and intracellular acidification trigger a rapid increase in the cAMP level within 1 min. We have identified a mutation in the genetic background of several related ‘wild‐type’ laboratory yeast strains (e.g. ENY.cat80‐7A, CEN.PK2‐1C) that largely prevents both cAMP responses, and we have called it lcr1 (for lack of cAMP responses). Subsequent analysis showed that lcr1 was allelic to CYR1/CDC35, encoding adenylate cyclase, and that it contained an A to T substitution at position 5627. This corresponds to a K1876M substitution near the end of the catalytic domain in adenylate cyclase. Introduction of the A5627T mutation into the CYR1 gene of a W303‐1A wild‐type strain largely eliminated glucose‐ and acidification‐induced cAMP signalling and also the transient cAMP increase that occurs in the lag phase of growth. Hence, lysine1876 of adenylate cyclase is essential for cAMP responses in vivo. Lysine1876 is conserved in Schizosaccharomyces pombe adenylate cyclase. Mn2+‐dependent adenylate cyclase activity in isolated plasma membranes of the cyr1met1876 (lcr1) strain was similar to that in the isogenic wild‐type strain, but GTP/Mg2+‐dependent activity was strongly reduced, consistent with the absence of signalling through adenylate cyclase in vivo. Glucose‐induced activation of trehalase was reduced and mobilization of trehalose and glycogen and loss of stress resistance were delayed in the cyr1met1876 (lcr1) mutant. During exponential growth on glucose, there was little effect on these protein kinase A (PKA) targets, indicating that the importance of glucose‐induced cAMP signalling is restricted to the transition from gluconeogenic/respiratory to fermentative growth. Inhibition of growth by weak acids was reduced, consistent with prevention of the intracellular acidification effect on cAMP by the cyr1met1876 (lcr1) mutation. The mutation partially suppressed the effect of RAS2val19 and GPA2val132 on several PKA targets. These results demonstrate the usefulness of the cyr1met1876 (lcr1) mutation for epistasis studies on the signalling function of the cAMP pathway.


Biotechnology for Biofuels | 2016

Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae.

Jean-Paul Meijnen; Paola Randazzo; Maria R. Foulquié-Moreno; Joost van den Brink; Paul Vandecruys; Marija Stojiljkovic; Françoise Dumortier; Teun Boekhout; Nina Gunde-Cimerman; Janez Kokošar; Miha Štajdohar; Tomaž Curk; Uroš Petrovič; Johan M. Thevelein

BackgroundAcetic acid is one of the major inhibitors in lignocellulose hydrolysates used for the production of second-generation bioethanol. Although several genes have been identified in laboratory yeast strains that are required for tolerance to acetic acid, the genetic basis of the high acetic acid tolerance naturally present in some Saccharomyces cerevisiae strains is unknown. Identification of its polygenic basis may allow improvement of acetic acid tolerance in yeast strains used for second-generation bioethanol production by precise genome editing, minimizing the risk of negatively affecting other industrially important properties of the yeast.ResultsHaploid segregants of a strain with unusually high acetic acid tolerance and a reference industrial strain were used as superior and inferior parent strain, respectively. After crossing of the parent strains, QTL mapping using the SNP variant frequency determined by pooled-segregant whole-genome sequence analysis revealed two major QTLs. All F1 segregants were then submitted to multiple rounds of random inbreeding and the superior F7 segregants were submitted to the same analysis, further refined by sequencing of individual segregants and bioinformatics analysis taking into account the relative acetic acid tolerance of the segregants. This resulted in disappearance in the QTL mapping with the F7 segregants of a major F1 QTL, in which we identified HAA1, a known regulator of high acetic acid tolerance, as a true causative allele. Novel genes determining high acetic acid tolerance, GLO1, DOT5, CUP2, and a previously identified component, VMA7, were identified as causative alleles in the second major F1 QTL and in three newly appearing F7 QTLs, respectively. The superior HAA1 allele contained a unique single point mutation that significantly improved acetic acid tolerance under industrially relevant conditions when inserted into an industrial yeast strain for second-generation bioethanol production.ConclusionsThis work reveals the polygenic basis of high acetic acid tolerance in S. cerevisiae in unprecedented detail. It also shows for the first time that a single strain can harbor different sets of causative genes able to establish the same polygenic trait. The superior alleles identified can be used successfully for improvement of acetic acid tolerance in industrial yeast strains.

Collaboration


Dive into the Françoise Dumortier's collaboration.

Top Co-Authors

Avatar

Johan M. Thevelein

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Patrick Van Dijck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Aloys Teunissen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katleen Lemaire

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Versele

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pingsheng Ma

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

An Tanghe

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Joris Winderickx

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Dijck Patrick Van

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge