Françoise Ochsenbein
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Françoise Ochsenbein.
The Plant Cell | 2007
Marta Boter; Béatrice Amigues; Jack Peart; Christian Breuer; Yasuhiro Kadota; Catarina Casais; Geoffrey R. Moore; Françoise Ochsenbein; Ken Shirasu; Raphaël Guerois
SGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins. Random mutagenesis of Arabidopsis thaliana SGT1b revealed that its CS (for CHORD-SGT1) and SGS (for SGT1 specific) domains are essential for disease resistance. NMR-based interaction surface mapping and mutational analyses of the CS domain showed that the CHORD II domain of RAR1 and the N-terminal domain of HSP90 interact with opposite sides of the CS domain. Functional analysis of the CS mutations indicated that the interaction between SGT1 and HSP90 is required for the accumulation of Rx, a potato (Solanum tuberosum) R protein. Biochemical reconstitution experiments suggest that RAR1 may function to enhance the SGT1–HSP90 interaction by promoting ternary complex formation.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Florence Mousson; Aurélie Lautrette; Jean-Yves Thuret; Morgane Agez; Régis Courbeyrette; Béatrice Amigues; Emmanuelle Becker; Jean-Michel Neumann; Raphaël Guerois; Carl Mann; Françoise Ochsenbein
Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.
Chromosoma | 2007
Florence Mousson; Françoise Ochsenbein; Carl Mann
Nucleosome assembly involves deposition of a heterotetramer of histones H3/H4 onto DNA followed by two heterodimers of histones H2A/H2B. Cycles of nucleosome assembly and disassembly are essential to cellular events such as replication, transcription, and DNA repair. After synthesis in the cytoplasm, histones are shuttled into the nucleus where they are associated with chaperone proteins. Chaperones of histones H3/H4 include CAF-I, the Hir proteins, and Asf1. CAF-I and the Hir proteins function as replication-coupled and replication-independent deposition factors for H3/H4, respectively, whereas Asf1 may play a role in both pathways. In addition to acting as assembly factors, histone chaperones assist nucleosome dissociation from DNA and they may recruit other proteins to chromatin. The past few years have witnessed a notable accumulation of genetic, biochemical, and structural data on Asf1, which motivated this review. We discuss the sequence and structural features of Asf1 before considering its roles in nucleosome assembly/disassembly, the cellular response to DNA damage, and the regulation of gene expression. We emphasize the key role of Asf1 as a central node in a network of partners that place it at the crossroads of chromatin and DNA checkpoint pathways.
Molecular and Cellular Biology | 2007
Ghislaine Guillemain; Emilie Ma; Sarah Mauger; Simona Miron; Robert Thai; Raphaël Guerois; Françoise Ochsenbein; Marie-Claude Marsolier-Kergoat
ABSTRACT In Saccharomyces cerevisiae, double-strand breaks (DSBs) activate DNA checkpoint pathways that trigger several responses including a strong G2/M arrest. We have previously provided evidence that the phosphatases Ptc2 and Ptc3 of the protein phosphatase 2C type are required for DNA checkpoint inactivation after a DSB and probably dephosphorylate the checkpoint kinase Rad53. In this article we have investigated further the interactions between Ptc2 and Rad53. We showed that forkhead-associated domain 1 (FHA1) of Rad53 interacts with a specific threonine of Ptc2, T376, located outside its catalytic domain in a TXXD motif which constitutes an optimal FHA1 binding sequence in vitro. Mutating T376 abolishes Ptc2 interaction with the Rad53 FHA1 domain and results in adaptation and recovery defects following a DSB. We found that Ckb1 and Ckb2, the regulatory subunits of the protein kinase CK2, are necessary for the in vivo interaction between Ptc2 and the Rad53 FHA1 domain, that Ckb1 binds Ptc2 in vitro and that ckb1Δ and ckb2Δ mutants are defective in adaptation and recovery after a DSB. Our data thus strongly suggest that CK2 is the kinase responsible for the in vivo phosphorylation of Ptc2 T376.
EMBO Reports | 2008
Yasuhiro Kadota; Béatrice Amigues; Lionel Ducassou; Hocine Madaoui; Françoise Ochsenbein; Raphaël Guerois; Ken Shirasu
SGT1 (Suppressor of G2 allele of skp1), a co‐chaperone of HSP90 (Heat‐shock protein 90), is required for innate immunity in plants and animals. Unveiling the cross talks between SGT1 and other co‐chaperones such as p23, AHA1 (Activator of HSP90 ATPase 1) or RAR1 (Required for Mla12 resistance) is an important step towards understanding the HSP90 machinery. Nuclear magnetic resonance spectroscopy and mutational analyses of HSP90 revealed the nature of its binding with the CS domain of SGT1. Although CS is structurally similar to p23, these domains were found to non‐competitively bind to various regions of HSP90; yet, unexpectedly, full‐length SGT1 could displace p23 from HSP90. RAR1 partly shares the same binding site with HSP90 as the CS domain, whereas AHA1 does not. This analysis allowed us to build a structural model of the HSP90–SGT1 complex and to obtain a compensatory mutant pair between both partners that is able to restore virus resistance in vivo through Rx (Resistance to potato virus X) immune sensor stabilization.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Marie-Bénédicte Barrault; N. Richet; Chloe Godard; Brice Murciano; Benoît Le Tallec; Erwann Rousseau; Pierre Legrand; Jean-Baptiste Charbonnier; Marie-Hélène Le Du; Raphaël Guerois; Françoise Ochsenbein; Anne Peyroche
The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1–Rpt2–Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3–Rpt1–Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.
Molecular and Cellular Biology | 2008
Angélique Galvani; Régis Courbeyrette; Morgane Agez; Françoise Ochsenbein; Carl Mann; Jean-Yves Thuret
ABSTRACT Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Yue Jiao; Karsten Seeger; Aurélie Lautrette; Albane Gaubert; Florence Mousson; Raphaël Guerois; Carl Mann; Françoise Ochsenbein
The histone chaperone Asf1 and the checkpoint kinase Rad53 are found in a complex in budding yeast cells in the absence of genotoxic stress. Our data suggest that this complex involves at least three interaction sites. One site involves the H3-binding surface of Asf11 with an as yet undefined surface of Rad53. A second site is formed by the Rad53-FHA1 domain binding to Asf1-T270 phosphorylated by casein kinase II. The third site involves the C-terminal 21 amino acids of Rad53 bound to the conserved Asf1 N-terminal domain. The structure of this site showed that the Rad53 C-terminus binds Asf1 in a remarkably similar manner to peptides derived from the histone cochaperones HirA and CAF-I. We call this binding motif, (R/K)R(I/A/V) × (L/P), the AIP box for Asf1-Interacting Protein box. Furthermore, C-terminal Rad53-F820 binds the same pocket of Asf1 as does histone H4-F100. Thus Rad53 competes with histones H3-H4 and cochaperones HirA/CAF-I for binding to Asf1. Rad53 is phosphorylated and activated upon genotoxic stress. The Asf1-Rad53 complex dissociated when cells were treated with hydroxyurea but not methyl-methane-sulfonate, suggesting a regulation of the complex as a function of the stress. We identified a rad53 mutation that destabilized the Asf1-Rad53 complex and increased the viability of rad9 and rad24 mutants in conditions of genotoxic stress, suggesting that complex stability impacts the DNA damage response.
Nucleic Acids Research | 2014
Julie Meurisse; Agathe Bacquin; N. Richet; Jean-Baptiste Charbonnier; Françoise Ochsenbein; Anne Peyroche
Rad53 is a conserved protein kinase with a central role in DNA damage response and nucleotide metabolism. We observed that the expression of a dominant-lethal form of RAD53 leads to significant expression changes for at least 16 genes, including the RNR3 and the HUG1 genes, both of which are involved in the control of nucleotide metabolism. We established by multiple biophysical and biochemical approaches that Hug1 is an intrinsically disordered protein that directly binds to the small RNR subunit Rnr2. We characterized the surface of interaction involved in Hug1 binding to Rnr2, and we thus defined a new binding region to Rnr2. Moreover, we show that Hug1 is deleterious to cell growth in the context of reduced RNR activity. This inhibitory effect of Hug1 on RNR activity depends on the binding of Hug1 to Rnr2. We propose a model in which Hug1 modulates Rnr2–Rnr1 association by binding Rnr2. We show that Hug1 accumulates under various physiological conditions of high RNR induction. Hence, both the regulation and the mode of action of Hug1 are different from those of the small protein inhibitors Dif1 and Sml1, and Hug1 can be considered as a regulator for fine-tuning of RNR activity.
Proteins | 2017
Jinchao Yu; Jessica Andreani; Françoise Ochsenbein; Raphaël Guerois
Computational protein–protein docking is of great importance for understanding protein interactions at the structural level. Critical assessment of prediction of interactions (CAPRI) experiments provide the protein docking community with a unique opportunity to blindly test methods based on real‐life cases and help accelerate methodology development. For CAPRI Rounds 28–35, we used an automatic docking pipeline integrating the coarse‐grained co‐evolution‐based potential InterEvScore. This score was developed to exploit the information contained in the multiple sequence alignments of binding partners and selectively recognize co‐evolved interfaces. Together with Zdock/Frodock for rigid‐body docking, SOAP‐PP for atomic potential and Rosetta applications for structural refinement, this pipeline reached high performance on a majority of targets. For protein–peptide docking and interfacial water position predictions, we also explored different means of taking evolutionary information into account. Overall, our group ranked 1st by correctly predicting 10 targets, composed of 1 High, 7 Medium and 2 Acceptable predictions. Excellent and Outstanding levels of accuracy were reached for each of the two water prediction targets, respectively. Altogether, in 15 out of 18 targets in total, evolutionary information, either through co‐evolution or conservation analyses, could provide key constraints to guide modeling towards the most likely assemblies. These results open promising perspectives regarding the way evolutionary information can be valuable to improve docking prediction accuracy. Proteins 2017; 85:378–390.
Collaboration
Dive into the Françoise Ochsenbein's collaboration.
Marie-Claude Marsolier-Kergoat
Centre national de la recherche scientifique
View shared research outputs