Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frandics P. Chan is active.

Publication


Featured researches published by Frandics P. Chan.


Journal of Magnetic Resonance Imaging | 2003

Time-resolved three-dimensional phase-contrast MRI.

Michael Markl; Frandics P. Chan; Marcus T. Alley; Kris L. Wedding; Mary T. Draney; Chris Elkins; David W. Parker; Ryan B. Wicker; Charles A. Taylor; Robert J. Herfkens; Norbert J. Pelc

To demonstrate the feasibility of a four‐dimensional phase contrast (PC) technique that permits spatial and temporal coverage of an entire three‐dimensional volume, to quantitatively validate its accuracy against an established time resolved two‐dimensional PC technique to explore advantages of the approach with regard to the four‐dimensional nature of the data.


Journal of Computer Assisted Tomography | 2004

Time-resolved 3-dimensional Velocity Mapping in the Thoracic Aorta: Visualization of 3-directional Blood Flow Patterns in Healthy Volunteers and Patients

Michael Markl; Mary T. Draney; Michael D. Hope; Jonathan M. Levin; Frandics P. Chan; Marcus T. Alley; Norbert J. Pelc; Robert J. Herfkens

Objective: An analysis of thoracic aortic blood flow in normal subjects and patients with aortic pathologic findings is presented. Various visualization tools were used to analyze blood flow patterns within a single 3-component velocity volumetric acquisition of the entire thoracic aorta Methods: Time-resolved, 3-dimensional phase-contrast magnetic resonance imaging (3D CINE PC MRI) was employed to obtain complete spatial and temporal coverage of the entire thoracic aorta combined with spatially registered 3-directional pulsatile blood flow velocities. Three-dimensional visualization tools, including time-resolved velocity vector fields reformatted to arbitrary 2-dimensional cut planes, 3D streamlines, and time-resolved 3D particle traces, were applied in a study with 10 normal volunteers. Results from 4 patient examinations with similar scan prescriptions to those of the volunteer scans are presented to illustrate flow features associated with common pathologic findings in the thoracic aorta. Results: Previously reported blood flow patterns in the thoracic aorta, including right-handed helical outflow, late systolic retrograde flow, and accelerated passage through the aortic valve plane, were visualized in all volunteers. The effects of thoracic aortic disease on spatial and temporal blood flow patterns are illustrated in clinical cases, including ascending aortic aneurysms, aortic regurgitation, and aortic dissection. Conclusion: Time-resolved 3D velocity mapping was successfully applied in a study of 10 healthy volunteers and 4 patients with documented aortic pathologic findings and has proven to be a reliable tool for analysis and visualization of normal characteristic as well as pathologic flow features within the entire thoracic aorta.


Annals of Biomedical Engineering | 2007

Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection

Alison L. Marsden; Irene E. Vignon-Clementel; Frandics P. Chan; Jeffrey A. Feinstein; Charles A. Taylor

Congenital heart defects with a single functional ventricle, such as hypoplastic left heart syndrome and tricuspid atresia, require a staged surgical approach to separate the systemic and pulmonary circulations. Ultimately, the venous or pulmonary side of the heart is bypassed by directly connecting the vena cava to the pulmonary arteries with a modified t-shaped junction. The Fontan procedure (total cavopulmonary connection, TCPC) completes this process of separation. To date, computational fluid dynamics (CFD) simulations in this low pressure, passive flow, intrathoracic system have neglected the presumed important effects of respiration on physiology and higher “stress” states such as with exercise have never been considered. We hypothesize that incorporating effects of respiration and exercise would provide more realistic estimates of TCPC performance. Time-dependent, 3D blood flow simulations are performed by a custom finite element solver for two patient-specific Fontan models with a novel respiration model, developed to generate physiologic time-varying flow conditions. Blood flow features, pressure, and energy efficiency are analyzed at rest and with increasing flow rates to simulate exercise conditions. The simulations produce realistic pressure and flow data, comparable to that measured by catheterization and echocardiography, and demonstrate substantial increases in energy dissipation (i.e. decreased performance) with exercise and respiration due to increasing intensity of small scale vortices in the flow. As would be expected, these changes are highly dependent on patient-specific anatomy and Fontan geometry. We propose that respiration and exercise should be incorporated into TCPC CFD simulations to provide increasingly realistic evaluations of TCPC performance.


Journal of Computer Assisted Tomography | 2004

Computed tomography angiography: state-of-the-art imaging using multidetector-row technology.

Alessandro Napoli; Dominik Fleischmann; Frandics P. Chan; Carlo Catalano; Jeffrey C. Hellinger; Roberto Passariello; Geoffrey D. Rubin

Multidetector-row computed tomography (MDCT) is an essential diagnostic modality for many clinical algorithms. This is particularly true with regard to the evaluation of cardiovascular disease. As a result of increased image acquisition speed, improved spatial resolution, and greater scan volume, MDCT angiography (computed tomography angiography [CTA]) has become an excellent noninvasive imaging technique, replacing intra-arterial digital subtraction angiography for most vascular territories. The clinical success of CTA depends on precise synchronization of image acquisition with optimal vascular enhancement. As technology continuously evolves, however, this task can be challenging. It remains important to have a fundamental knowledge of the principles behind technical parameters and contrast medium administration. This article reviews these essential principles, followed by an overview of current clinical applications.


American Journal of Roentgenology | 2007

Pediatric cardiac-gated CT angiography : Assessment of radiation dose

Caroline L. Hollingsworth; Terry T. Yoshizumi; Donald P. Frush; Frandics P. Chan; Greta Toncheva; Giao Nguyen; Carolyn Lowry; Lynne M. Hurwitz

OBJECTIVE The purpose of our study was to determine a dose range for cardiac-gated CT angiography (CTA) in children. MATERIALS AND METHODS ECG-gated cardiac CTA simulating scanning of the heart was performed on an anthropomorphic phantom of a 5-year-old child on a 16-MDCT scanner using variable parameters (small field of view; 16 x 0.625 mm configuration; 0.5-second gantry cycle time; 0.275 pitch; 120 kVp at 110, 220, and 330 mA; and 80 kVp at 385 mA). Metal oxide semiconductor field effect transistor (MOSFET) technology measured 20 organ doses. Effective dose calculated using the dose-length product (DLP) was compared with effective dose determined from measured absorbed organ doses. RESULTS Highest organ doses included breast (3.5-12.6 cGy), lung (3.3-12.1 cGy), and bone marrow (1.7-7.6 cGy). The 80 kVp/385 mA examination produced lower radiation doses to all organs than the 120 kVp/220 mA examination. MOSFET effective doses (+/- SD) were as follows: 110 mA: 7.4 mSv (+/- 0.6 mSv), 220 mA: 17.2 mSv (+/- 0.3 mSv), 330 mA: 25.7 mSv (+/- 0.3 mSv), 80 kVp/385 mA: 10.6 mSv (+/- 0.2 mSv). DLP effective doses for diagnostic runs were as follows: 110 mA: 8.7 mSv, 220 mA: 19 mSv, 330 mA: 28 mSv, 80 kVp/385 mA: 12 mSv. DLP effective doses exceeded MOSFET effective doses by 9.7-17.2%. CONCLUSION Radiation doses for a 5-year-old during cardiac-gated CTA vary greatly depending on parameters. Organ doses can be high; the effective dose may reach 28.4 mSv. Further work, including determination of size-appropriate mA and image quality, is important before routine use of this technique in children.


Annals of Biomedical Engineering | 2002

In Vivo Validation of Numerical Prediction of Blood Flow in Arterial Bypass Grafts

Joy P. Ku; Mary T. Draney; Frank R. Arko; W. Anthony Lee; Frandics P. Chan; Norbert J. Pelc; Christopher K. Zarins; Charles A. Taylor

AbstractIn planning operations for patients with cardiovascular disease, vascular surgeons rely on their training, past experiences with patients with similar conditions, and diagnostic imaging data. However, variability in patient anatomy and physiology makes it difficult to quantitatively predict the surgical outcome for a specific patient a priori. We have developed a simulation-based medical planning system that utilizes three-dimensional finite-element analysis methods and patient-specific anatomic and physiologic information to predict changes in blood flow resulting from surgical bypass procedures. In order to apply these computational methods, they must be validated against direct experimental measurements. In this study, we compared in vivo flow measurements obtained using magnetic resonance imaging techniques to calculated flow values predicted using our analysis methods in thoraco–thoraco aortic bypass procedures in eight pigs. Predicted average flow rates and flow rate waveforms were compared for two locations. The predicted and measured waveforms had similar shapes and amplitudes, while flow distribution predictions were within 10.6% of the experimental data. The average absolute difference in the bypass-to-inlet blood flow ratio was 5.4±2.8%. For the aorta-to-inlet blood flow ratio, the average absolute difference was 6.0±3.3%.


Journal of Biomechanical Engineering-transactions of The Asme | 2011

Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients

John F. LaDisa; C. Alberto Figueroa; Irene E. Vignon-Clementel; Hyun Jin Kim; Nan Xiao; Laura Ellwein; Frandics P. Chan; Jeffrey A. Feinstein; Charles A. Taylor

Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients (Δ), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: Δ12 mmHg, severe native CoA: Δ25 mmHg and postoperative end-to-end and end-to-side patients: Δ0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak ΔBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak ΔBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area.


American Journal of Roentgenology | 2012

Rapid Pediatric Cardiac Assessment of Flow and Ventricular Volume With Compressed Sensing Parallel Imaging Volumetric Cine Phase-Contrast MRI

Albert Hsiao; Michael Lustig; Marcus T. Alley; Mark Murphy; Frandics P. Chan; Robert J. Herfkens; Shreyas S. Vasanawala

OBJECTIVE The quantification of cardiac flow and ventricular volumes is an essential goal of many congenital heart MRI examinations, often requiring acquisition of multiple 2D phase-contrast and bright-blood cine steady-state free precession (SSFP) planes. Scan acquisition, however, is lengthy and highly reliant on an imager who is well-versed in structural heart disease. Although it can also be lengthy, 3D time-resolved (4D) phase-contrast MRI yields global flow patterns and is simpler to perform. We therefore sought to accelerate 4D phase contrast and to determine whether equivalent flow and volume measurements could be extracted. MATERIALS AND METHODS Four-dimensional phase contrast was modified for higher acceleration with compressed sensing. Custom software was developed to process 4D phase-contrast images. We studied 29 patients referred for congenital cardiac MRI who underwent a routine clinical protocol, including cine short-axis stack SSFP and 2D phase contrast, followed by contrast-enhanced 4D phase contrast. To compare quantitative measurements, Bland-Altman analysis, paired Student t tests, and F tests were used. RESULTS Ventricular end-diastolic, end-systolic, and stroke volumes obtained from 4D phase contrast and SSFP were well correlated (ρ = 0.91-0.95; r(2) = 0.83-0.90), with no statistically significant difference. Ejection fractions were well correlated in a subpopulation that underwent higher-resolution compressed-sensing 4D phase contrast (ρ = 0.88; r(2) = 0.77). Four-dimensional phase contrast and 2D phase contrast flow rates were also well correlated (ρ = 0.90; r(2) = 0.82). Excluding ventricles with valvular insufficiency, cardiac outputs derived from outlet valve flow and stroke volumes were more consistent by 4D phase contrast than by 2D phase contrast and SSFP. CONCLUSION Combined parallel imaging and compressed sensing can be applied to 4D phase contrast. With custom software, flow and ventricular volumes may be extracted with comparable accuracy to SSFP and 2D phase contrast. Furthermore, cardiac outputs were more consistent by 4D phase contrast.


Congenital Heart Disease | 2011

COMPUTATIONAL SIMULATIONS DEMONSTRATE ALTERED WALL SHEAR STRESS IN AORTIC COARCTATION PATIENTS TREATED BY RESECTION WITH END-TO-END ANASTOMOSIS

John F. LaDisa; Ronak Jashwant Dholakia; Alberto Figueroa; Irene E. Vignon-Clementel; Frandics P. Chan; Margaret M. Samyn; Joseph R. Cava; Charles A. Taylor; Jeffrey A. Feinstein

BACKGROUND Atherosclerotic plaque in the descending thoracic aorta (dAo) is related to altered wall shear stress (WSS) for normal patients. Resection with end-to-end anastomosis (RWEA) is the gold standard for coarctation of the aorta (CoA) repair, but may lead to altered WSS indices that contribute to morbidity. METHODS Computational fluid dynamics (CFD) models were created from imaging and blood pressure data for control subjects and age- and gender-matched CoA patients treated by RWEA (four males, two females, 15 ± 8 years). CFD analysis incorporated downstream vascular resistance and compliance to generate blood flow velocity, time-averaged WSS (TAWSS), and oscillatory shear index (OSI) results. These indices were quantified longitudinally and circumferentially in the dAo, and several visualization methods were used to highlight regions of potential hemodynamic susceptibility. RESULTS The total dAo area exposed to subnormal TAWSS and OSI was similar between groups, but several statistically significant local differences were revealed. Control subjects experienced left-handed rotating patterns of TAWSS and OSI down the dAo. TAWSS was elevated in CoA patients near the site of residual narrowings and OSI was elevated distally, particularly along the left dAo wall. Differences in WSS indices between groups were negligible more than 5 dAo diameters distal to the aortic arch. CONCLUSIONS Localized differences in WSS indices within the dAo of CoA patients treated by RWEA suggest that plaque may form in unique locations influenced by the surgical repair. These regions can be visualized in familiar and intuitive ways allowing clinicians to track their contribution to morbidity in longitudinal studies.


Pulmonary circulation | 2012

Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study.

Beverly T. Tang; Sarah S. Pickard; Frandics P. Chan; Philip S. Tsao; Charles A. Taylor; Jeffrey A. Feinstein

Previous clinical studies in pulmonary arterial hypertension (PAH) have concentrated predominantly on distal pulmonary vascular resistance, its contribution to the disease process, and response to therapy. However, it is well known that biomechanical factors such as shear stress have an impact on endothelial health and dysfunction in other parts of the vasculature. This study tested the hypothesis that wall shear stress is reduced in the proximal pulmonary arteries of PAH patients with the belief that reduced shear stress may contribute to pulmonary endothelial cell dysfunction and as a result, PAH progression. A combined MRI and computational fluid dynamics (CFD) approach was used to construct subject-specific pulmonary artery models and quantify flow features and wall shear stress (WSS) in five PAH patients with moderate-to-severe disease and five age- and sex-matched controls. Three-dimensional model reconstruction showed PAH patients have significantly larger main, right, and left pulmonary artery diameters (3.5 ± 0.4 vs. 2.7 ± 0.1 cm, P = 0.01; 2.5 ± 0.4 vs. 1.9 ± 0.2 cm, P = 0.04; and 2.6 ± 0.4 vs. 2.0 ± 0.2 cm, P = 0.01, respectively), and lower cardiac output (3.7 ± 1.2 vs. 5.8 ± 0.6 L/min, P = 0.02.). CFD showed significantly lower time-averaged central pulmonary artery WSS in PAH patients compared to controls (4.3 ± 2.8 vs. 20.5 ± 4.0 dynes/cm2, P = 0.0004). Distal WSS was not significantly different. A novel method of measuring WSS was utilized to demonstrate for the first time that WSS is altered in some patients with PAH. Using computational modeling in patient-specific models, WSS was found to be significantly lower in the proximal pulmonary arteries of PAH patients compared to controls. Reduced WSS in proximal pulmonary arteries may play a role in the pathogenesis and progression of PAH. This data may serve as a basis for future in vitro studies of, for example, effects of WSS on gene expression.

Collaboration


Dive into the Frandics P. Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge