Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank A. Duca is active.

Publication


Featured researches published by Frank A. Duca.


Nature Medicine | 2015

Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats

Frank A. Duca; Clémence D. Côté; Brittany A. Rasmussen; Melika Zadeh-Tahmasebi; Guy A. Rutter; Beatrice M. Filippi; Tony K.T. Lam

Metformin is a first-line therapeutic option for the treatment of type 2 diabetes, even though its underlying mechanisms of action are relatively unclear. Metformin lowers blood glucose levels by inhibiting hepatic glucose production (HGP), an effect originally postulated to be due to a hepatic AMP-activated protein kinase (AMPK)-dependent mechanism. However, studies have questioned the contribution of hepatic AMPK to the effects of metformin on lowering hyperglycemia, and a gut–brain–liver axis that mediates intestinal nutrient- and hormone-induced lowering of HGP has been identified. Thus, it is possible that metformin affects HGP through this inter-organ crosstalk. Here we show that intraduodenal infusion of metformin for 50 min activated duodenal mucosal Ampk and lowered HGP in a rat 3 d high fat diet (HFD)-induced model of insulin resistance. Inhibition of duodenal Ampk negated the HGP-lowering effect of intraduodenal metformin, and both duodenal glucagon-like peptide-1 receptor (Glp-1r)–protein kinase A (Pka) signaling and a neuronal-mediated gut–brain–liver pathway were required for metformin to lower HGP. Preabsorptive metformin also lowered HGP in rat models of 28 d HFD–induced obesity and insulin resistance and nicotinamide (NA)–streptozotocin (STZ)–HFD-induced type 2 diabetes. In an unclamped setting, inhibition of duodenal Ampk reduced the glucose-lowering effects of a bolus metformin treatment in rat models of diabetes. These findings show that, in rat models of both obesity and diabetes, metformin activates a previously unappreciated duodenal Ampk–dependent pathway to lower HGP and plasma glucose levels.


Nature Medicine | 2015

Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network

Clémence D. Côté; Brittany A. Rasmussen; Frank A. Duca; Melika Zadeh-Tahmasebi; Joseph A Baur; Mira Daljeet; Danna M. Breen; Beatrice M. Filippi; Tony K.T. Lam

Resveratrol improves insulin sensitivity and lowers hepatic glucose production (HGP) in rat models of obesity and diabetes, but the underlying mechanisms for these antidiabetic effects remain elusive. One process that is considered a key feature of resveratrol action is the activation of the nicotinamide adenine dinucleotide (NAD+)–dependent deacetylase sirtuin 1 (SIRT1) in various tissues. However, the low bioavailability of resveratrol raises questions about whether the antidiabetic effects of oral resveratrol can act directly on these tissues. We show here that acute intraduodenal infusion of resveratrol reversed a 3 d high fat diet (HFD)–induced reduction in duodenal–mucosal Sirt1 protein levels while also enhancing insulin sensitivity and lowering HGP. Further, we found that duodenum-specific knockdown of Sirt1 expression for 14 d was sufficient to induce hepatic insulin resistance in rats fed normal chow. We also found that the glucoregulatory role of duodenally acting resveratrol required activation of Sirt1 and AMP-activated protein kinase (Ampk) in this tissue to initiate a gut–brain–liver neuronal axis that improved hypothalamic insulin sensitivity and in turn, reduced HGP. In addition to the effects of duodenally acting resveratrol in an acute 3 d HFD–fed model of insulin resistance, we also found that short-term infusion of resveratrol into the duodenum lowered HGP in two other rat models of insulin resistance—a 28 d HFD–induced model of obesity and a nicotinamide (NA)–streptozotocin (STZ)–HFD-induced model of mild type 2 diabetes. Together, these studies highlight the therapeutic relevance of targeting duodenal SIRT1 to reverse insulin resistance and improve glucose homeostasis in obesity and diabetes.


Journal of Biological Chemistry | 2014

Hormonal signaling in the gut

Clémence D. Côté; Melika Zadeh-Tahmasebi; Brittany A. Rasmussen; Frank A. Duca; Tony K.T. Lam

The gut is anatomically positioned to play a critical role in the regulation of metabolic homeostasis, providing negative feedback via nutrient sensing and local hormonal signaling. Gut hormones, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), are released following a meal and act on local receptors to regulate glycemia via a neuronal gut-brain axis. Additionally, jejunal nutrient sensing and leptin action are demonstrated to suppress glucose production, and both are required for the rapid antidiabetic effect of duodenal jejunal bypass surgery. Strategies aimed at targeting local gut hormonal signaling pathways may prove to be efficacious therapeutic options to improve glucose control in diabetes.


Cell Metabolism | 2015

Glucoregulatory Relevance of Small Intestinal Nutrient Sensing in Physiology, Bariatric Surgery, and Pharmacology.

Frank A. Duca; Paige V. Bauer; Sophie C. Hamr; Tony K.T. Lam

Emerging evidence suggests the gastrointestinal tract plays an important glucoregulatory role. In this perspective, we first review how the intestine senses ingested nutrients, initiating crucial negative feedback mechanisms through a gut-brain neuronal axis to regulate glycemia, mainly via reduction in hepatic glucose production. We then highlight how intestinal energy sensory mechanisms are responsible for the glucose-lowering effects of bariatric surgery, specifically duodenal-jejunal bypass, and the antidiabetic agents metformin and resveratrol. A better understanding of these pathways lays the groundwork for intestinally targeted drug therapy for the treatment of diabetes.


Molecular and Cellular Endocrinology | 2014

Fatty acid sensing in the gut and the hypothalamus: In vivo and in vitro perspectives

Frank A. Duca; Jessica T.Y. Yue

The ability to properly sense both ingested and circulating nutrients is crucial for the maintenance of metabolic homeostasis. As such, both the gastrointestinal tract and the hypothalamus have demonstrated the capacity to sense and effectively respond to nutrients, such as fatty acids, to control food intake and glucose production to regulate energy and glucose homeostasis. In modern, Westernized societies, obesity and diabetes rates continue to rise unabated, due in part to an increase in highly palatable high-fat diet consumption. Thus, our understanding in the ability of the body to successfully monitor lipids is more vital than ever. This review details the current understanding of both the gut and the brain, specifically the hypothalamus, in sensing fatty acids. Highlighting both in vivo and in vitro studies, we explore some of the mechanisms upon which different fatty acids activate enteroendocrine and neural lipid-sensing signaling mechanisms to subsequently lower food intake and glucose production to ultimately regulate metabolic homeostasis. A better understanding of these lipid-sensing pathways could lay the groundwork for successful pharmacological targets for the treatment of obesity and diabetes.


Cell Metabolism | 2014

Jejunal leptin-PI3K signaling lowers glucose production

Brittany A. Rasmussen; Danna M. Breen; Frank A. Duca; Clémence D. Côté; Melika Zadeh-Tahmasebi; Beatrice M. Filippi; Tony K.T. Lam

The fat-derived hormone leptin binds to its hypothalamic receptors to regulate glucose homeostasis. Leptin is also synthesized in the stomach and subsequently binds to its receptors expressed in the intestine, although the functional relevance of such activation remains largely unknown. We report here that intrajejunal leptin administration activates jejunal leptin receptors and signals through a phosphatidylinositol 3-kinase (PI3K)-dependent and signal transducer and activator of transcription 3 (STAT3)-independent signaling pathway to lower glucose production in healthy rodents. Jejunal leptin action is sufficient to lower glucose production in uncontrolled diabetic and high-fat-fed rodents and contributes to the early antidiabetic effect of duodenal-jejunal bypass surgery. These data unveil a glucoregulatory site of leptin action and suggest that enhancing leptin-PI3K signaling in the jejunum lowers plasma glucose concentrations in diabetes.


Cell Metabolism | 2018

Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway

Paige V. Bauer; Frank A. Duca; T.M. Zaved Waise; Brittany A. Rasmussen; Mona A. Abraham; Helen J. Dranse; Akshita Puri; Catherine O’Brien; Tony K.T. Lam

The gut microbiota alters energy homeostasis. In parallel, metformin regulates upper small intestinal sodium glucose cotransporter-1 (SGLT1), but whether changes of the microbiota or SGLT1-dependent pathways in the upper small intestine mediate metformin action is unknown. Here we report that upper small intestinal glucose sensing triggers an SGLT1-dependent pathway to lower glucose production in rodents. High-fat diet (HFD) feeding reduces glucose sensing and SGLT1 expression in the upper small intestine. Upper small intestinal metformin treatment restores SGLT1 expression and glucose sensing while shifting the upper small intestinal microbiota partly by increasing the abundance of Lactobacillus. Transplantation of upper small intestinal microbiota from metformin-treated HFD rats to the upper small intestine of untreated HFD rats also increases the upper small intestinal abundance of Lactobacillus and glucose sensing via an upregulation of SGLT1 expression. Thus, we demonstrate that metformin alters upper small intestinal microbiota and impacts a glucose-SGLT1-sensing glucoregulatory pathway.


Journal of Biological Chemistry | 2016

Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

Melika Zadeh-Tahmasebi; Frank A. Duca; Brittany A. Rasmussen; Paige V. Bauer; Clémence D. Côté; Beatrice M. Filippi; Tony K.T. Lam

Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo. We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis.


Diabetes | 2014

Insulin Signals Through the Dorsal Vagal Complex to Regulate Energy Balance

Beatrice M. Filippi; Aria Bassiri; Mona A. Abraham; Frank A. Duca; Jessica T.Y. Yue; Tony K.T. Lam

Insulin signaling in the hypothalamus regulates food intake and hepatic glucose production in rodents. Although it is known that insulin also activates insulin receptor in the dorsal vagal complex (DVC) to lower glucose production through an extracellular signal–related kinase 1/2 (Erk1/2)–dependent and phosphatidylinositol 3-kinase (PI3K)–independent pathway, it is unknown whether DVC insulin action regulates food intake. We report here that a single acute infusion of insulin into the DVC decreased food intake in healthy male rats. Chemical and molecular inhibition of Erk1/2 signaling in the DVC negated the acute anorectic effect of insulin in healthy rats, while DVC insulin acute infusion failed to lower food intake in high fat–fed rats. Finally, molecular disruption of Erk1/2 signaling in the DVC of healthy rats per se increased food intake and induced obesity over a period of 2 weeks, whereas a daily repeated acute DVC insulin infusion for 12 days conversely decreased food intake and body weight in healthy rats. In summary, insulin activates Erk1/2 signaling in the DVC to regulate energy balance.


Journal of Endocrinology | 2016

Targeting the gastrointestinal tract to treat type 2 diabetes.

Paige V Bauer; Frank A. Duca

The rising global rates of type 2 diabetes and obesity present a significant economic and social burden, underscoring the importance for effective and safe therapeutic options. The success of glucagon-like-peptide-1 receptor agonists in the treatment of type 2 diabetes, along with the potent glucose-lowering effects of bariatric surgery, highlight the gastrointestinal tract as a potential target for diabetes treatment. Furthermore, recent evidence suggests that the gut plays a prominent role in the ability of metformin to lower glucose levels. As such, the current review highlights some of the current and potential pathways in the gut that could be targeted to improve glucose homeostasis, such as changes in nutrient sensing, gut peptides, gut microbiota and bile acids. A better understanding of these pathways will lay the groundwork for novel gut-targeted antidiabetic therapies, some of which have already shown initial promise.

Collaboration


Dive into the Frank A. Duca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akshita Puri

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge