Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony K.T. Lam is active.

Publication


Featured researches published by Tony K.T. Lam.


Nature | 2005

Hypothalamic K(ATP) channels control hepatic glucose production.

Alessandro Pocai; Tony K.T. Lam; Roger Gutierrez-Juarez; Silvana Obici; Gary J. Schwartz; Joseph Bryan; Lydia Aguilar-Bryan; Luciano Rossetti

Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (KATP) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a KATP blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the KATP channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic KATP channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.


Nature Neuroscience | 2005

Hypothalamic sensing of fatty acids

Tony K.T. Lam; Gary J. Schwartz; Luciano Rossetti

Selective regions of the brain, including the hypothalamus, are capable of gathering information on the bodys nutritional status in order to implement appropriate behavioral and metabolic responses to changes in fuel availability. This review focuses on direct metabolic signaling within the hypothalamus. There is growing evidence supporting the idea that fatty acid metabolism within discrete hypothalamic regions can function as a sensor for nutrient availability that can integrate multiple nutritional and hormonal signals.


Nature Neuroscience | 2006

Molecular disruption of hypothalamic nutrient sensing induces obesity

Wu He; Tony K.T. Lam; Silvana Obici; Luciano Rossetti

The sensing of circulating nutrients within the mediobasal hypothalamus may be critical for energy homeostasis. To induce a sustained impairment in hypothalamic nutrient sensing, adeno-associated viruses (AAV) expressing malonyl–coenzyme A decarboxylase (MCD; an enzyme involved in the degradation of malonyl coenzyme A) were injected bilaterally into the mediobasal hypothalamus of rats. MCD overexpression led to decreased abundance of long-chain fatty acyl–coenzyme A in the mediobasal hypothalamus and blunted the hypothalamic responses to increased lipid availability. The enhanced expression of MCD within this hypothalamic region induced a rapid increase in food intake and progressive weight gain. Obesity was sustained for at least 4 months and occurred despite increased plasma concentrations of leptin and insulin. These findings indicate that nutritional modulation of the hypothalamic abundance of malonyl–coenzyme A is required to restrain food intake and that a primary impairment in this central nutrient-sensing pathway is sufficient to disrupt energy homeostasis and induce obesity.


Nature | 2008

Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production

Penny Y.T. Wang; Liora Caspi; Carol K.L. Lam; Madhu Chari; Xiaosong Li; Peter E. Light; Roger Gutierrez-Juarez; Michelle Ang; Gary J. Schwartz; Tony K.T. Lam

Energy and glucose homeostasis are regulated by food intake and liver glucose production, respectively. The upper intestine has a critical role in nutrient digestion and absorption. However, studies indicate that upper intestinal lipids inhibit food intake as well in rodents and humans by the activation of an intestine–brain axis. In parallel, a brain–liver axis has recently been proposed to detect blood lipids to inhibit glucose production in rodents. Thus, we tested the hypothesis that upper intestinal lipids activate an intestine–brain–liver neural axis to regulate glucose homeostasis. Here we demonstrate that direct administration of lipids into the upper intestine increased upper intestinal long-chain fatty acyl-coenzyme A (LCFA-CoA) levels and suppressed glucose production. Co-infusion of the acyl-CoA synthase inhibitor triacsin C or the anaesthetic tetracaine with duodenal lipids abolished the inhibition of glucose production, indicating that upper intestinal LCFA-CoAs regulate glucose production in the preabsorptive state. Subdiaphragmatic vagotomy or gut vagal deafferentation interrupts the neural connection between the gut and the brain, and blocks the ability of upper intestinal lipids to inhibit glucose production. Direct administration of the N-methyl-d-aspartate ion channel blocker MK-801 into the fourth ventricle or the nucleus of the solitary tract where gut sensory fibres terminate abolished the upper-intestinal-lipid-induced inhibition of glucose production. Finally, hepatic vagotomy negated the inhibitory effects of upper intestinal lipids on glucose production. These findings indicate that upper intestinal lipids activate an intestine–brain–liver neural axis to inhibit glucose production, and thereby reveal a previously unappreciated pathway that regulates glucose homeostasis.


Journal of Clinical Investigation | 2006

Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats

Alessandro Pocai; Tony K.T. Lam; Silvana Obici; Roger Gutierrez-Juarez; Evan D. Muse; Arduino Arduini; Luciano Rossetti

Short-term overfeeding blunts the central effects of fatty acids on food intake and glucose production. This acquired defect in nutrient sensing could contribute to the rapid onset of hyperphagia and insulin resistance in this model. Here we examined whether central inhibition of lipid oxidation is sufficient to restore the hypothalamic levels of long-chain fatty acyl-CoAs (LCFA-CoAs) and to normalize food intake and glucose homeostasis in overfed rats. To this end, we targeted the liver isoform of carnitine palmitoyltransferase-1 (encoded by the CPT1A gene) by infusing either a sequence-specific ribozyme against CPT1A or an isoform-selective inhibitor of CPT1A activity in the third cerebral ventricle or in the mediobasal hypothalamus (MBH). Inhibition of CPT1A activity normalized the hypothalamic levels of LCFA-CoAs and markedly inhibited feeding behavior and hepatic glucose fluxes in overfed rats. Thus central inhibition of lipid oxidation is sufficient to restore hypothalamic lipid sensing as well as glucose and energy homeostasis in this model and may be an effective approach to the treatment of diet-induced obesity and insulin resistance.


Nature Medicine | 2012

Jejunal nutrient sensing is required for duodenal-jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes

Danna M. Breen; Brittany A. Rasmussen; Andrea Kokorovic; Rennian Wang; Grace W.C. Cheung; Tony K.T. Lam

Gastrointestinal bypass surgeries restore metabolic homeostasis in patients with type 2 diabetes and obesity, but the underlying mechanisms remain elusive. Duodenal-jejunal bypass surgery (DJB), an experimental surgical technique that excludes the duodenum and proximal jejunum from nutrient transit, lowers glucose concentrations in nonobese type 2 diabetic rats. Given that DJB redirects and enhances nutrient flow into the jejunum and that jejunal nutrient sensing affects feeding, the repositioned jejunum after DJB represents a junction at which nutrients could regulate glucose homeostasis. Here we found that intrajejunal nutrient administration lowered endogenous glucose production in normal rats through a gut-brain-liver network in the presence of basal plasma insulin concentrations. Inhibition of jejunal glucose uptake or formation of long chain fatty acyl-coA negated the metabolic effects of glucose or lipid, respectively, in normal rats, and altered the rapid (2 d) glucose-lowering effect induced by DJB in streptozotocin (STZ)-induced uncontrolled diabetic rats during refeeding. Lastly, in insulin-deficient autoimmune type 1 diabetic rats and STZ-induced diabetic rats, DJB lowered glucose concentrations in 2 d independently of changes in plasma insulin concentrations, food intake and body weight. These data unveil a glucoregulatory role of jejunal nutrient sensing and its relevance in the early improvement of glycemic control after DJB in rat models of uncontrolled diabetes.


Nature Medicine | 2007

Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins.

Tony K.T. Lam; Roger Gutierrez-Juarez; Alessandro Pocai; Sanjay Bhanot; Patrick Tso; Gary J. Schwartz; Luciano Rossetti

Increased production of very low-density lipoprotein (VLDL) is a critical feature of the metabolic syndrome. Here we report that a selective increase in brain glucose lowered circulating triglycerides (TG) through the inhibition of TG-VLDL secretion by the liver. We found that the effect of glucose required its conversion to lactate, leading to activation of ATP-sensitive potassium channels and to decreased hepatic activity of stearoyl-CoA desaturase-1 (SCD1). SCD1 catalyzed the synthesis of oleyl-CoA from stearoyl-CoA. Curtailing the liver activity of SCD1 was sufficient to lower the hepatic levels of oleyl-CoA and to recapitulate the effects of central glucose administration on VLDL secretion. Notably, portal infusion of oleic acid restored hepatic oleyl-CoA to control levels and negated the effects of both central glucose and SCD1 deficiency on TG-VLDL secretion. These central effects of glucose (but not those of lactate) were rapidly lost in diet-induced obesity. These findings indicate that a defect in brain glucose sensing could play a critical role in the etiology of the metabolic syndrome.


Nature Medicine | 2015

Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats

Frank A. Duca; Clémence D. Côté; Brittany A. Rasmussen; Melika Zadeh-Tahmasebi; Guy A. Rutter; Beatrice M. Filippi; Tony K.T. Lam

Metformin is a first-line therapeutic option for the treatment of type 2 diabetes, even though its underlying mechanisms of action are relatively unclear. Metformin lowers blood glucose levels by inhibiting hepatic glucose production (HGP), an effect originally postulated to be due to a hepatic AMP-activated protein kinase (AMPK)-dependent mechanism. However, studies have questioned the contribution of hepatic AMPK to the effects of metformin on lowering hyperglycemia, and a gut–brain–liver axis that mediates intestinal nutrient- and hormone-induced lowering of HGP has been identified. Thus, it is possible that metformin affects HGP through this inter-organ crosstalk. Here we show that intraduodenal infusion of metformin for 50 min activated duodenal mucosal Ampk and lowered HGP in a rat 3 d high fat diet (HFD)-induced model of insulin resistance. Inhibition of duodenal Ampk negated the HGP-lowering effect of intraduodenal metformin, and both duodenal glucagon-like peptide-1 receptor (Glp-1r)–protein kinase A (Pka) signaling and a neuronal-mediated gut–brain–liver pathway were required for metformin to lower HGP. Preabsorptive metformin also lowered HGP in rat models of 28 d HFD–induced obesity and insulin resistance and nicotinamide (NA)–streptozotocin (STZ)–HFD-induced type 2 diabetes. In an unclamped setting, inhibition of duodenal Ampk reduced the glucose-lowering effects of a bolus metformin treatment in rat models of diabetes. These findings show that, in rat models of both obesity and diabetes, metformin activates a previously unappreciated duodenal Ampk–dependent pathway to lower HGP and plasma glucose levels.


Cell Metabolism | 2009

Intestinal Cholecystokinin Controls Glucose Production through a Neuronal Network

Grace W.C. Cheung; Andrea Kokorovic; Carol K.L. Lam; Madhu Chari; Tony K.T. Lam

Cholecystokinin (CCK) is a peptide hormone that is released from the gut in response to nutrients such as lipids to lower food intake. Here we report that a primary increase of CCK-8, the biologically active form of CCK, in the duodenum lowers glucose production independent of changes in circulating insulin levels. Furthermore, we show that duodenal CCK-8 requires the activation of the gut CCK-A receptor and a gut-brain-liver neuronal axis to lower glucose production. Finally, duodenal CCK-8 fails to lower glucose production in the early onset of high-fat diet-induced insulin resistance. These findings reveal a role for gut CCK that lowers glucose production through a neuronal network and suggest that intestinal CCK resistance may contribute to hyperglycemia in response to high-fat feeding.


Nature Medicine | 2010

Neuronal regulation of homeostasis by nutrient sensing

Tony K.T. Lam

In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

Collaboration


Dive into the Tony K.T. Lam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhu Chari

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Rossetti

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Roger Gutierrez-Juarez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank A. Duca

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge