Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Asuncion is active.

Publication


Featured researches published by Frank Asuncion.


Journal of Bone and Mineral Research | 2008

Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength.

Xiaodong Li; Michael S. Ominsky; Qing-Tian Niu; Ning Sun; Betsy Daugherty; Diane D'Agostin; Carole Kurahara; Yongming Gao; Jin Cao; Jianhua Gong; Frank Asuncion; Mauricio Barrero; Kelly Warmington; Denise Dwyer; Marina Stolina; Sean Morony; Ildiko Sarosi; Paul J. Kostenuik; David L. Lacey; W. Scott Simonet; Hua Zhu Ke; Chris Paszty

Introduction: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone.


Journal of Bone and Mineral Research | 2009

Denosumab, a Fully Human Monoclonal Antibody to RANKL, Inhibits Bone Resorption and Increases BMD in Knock‐In Mice That Express Chimeric (Murine/Human) RANKL

Paul J. Kostenuik; Hung Q. Nguyen; James McCabe; Kelly Warmington; Carol Kurahara; Ning Sun; Ching Chen; Luke Li; Russ Cattley; Gwyneth Van; Shelia Scully; Robin Elliott; Mario Grisanti; Sean Morony; Hong Lin Tan; Frank Asuncion; Xiaodong Li; Michael S. Ominsky; Marina Stolina; Denise Dwyer; William C. Dougall; Nessa Hawkins; William J. Boyle; William Scott Simonet; John K. Sullivan

RANKL is a TNF family member that mediates osteoclast formation, activation, and survival by activating RANK. The proresorptive effects of RANKL are prevented by binding to its soluble inhibitor osteoprotegerin (OPG). Recombinant human OPG‐Fc recognizes RANKL from multiple species and reduced bone resorption and increased bone volume, density, and strength in a number of rodent models of bone disease. The clinical development of OPG‐Fc was discontinued in favor of denosumab, a fully human monoclonal antibody that specifically inhibits primate RANKL. Direct binding assays showed that denosumab bound to human RANKL but not to murine RANKL, human TRAIL, or other human TNF family members. Denosumab did not suppress bone resorption in normal mice or rats but did prevent the resorptive response in mice challenged with a human RANKL fragment encoded primarily by the fifth exon of the RANKL gene. To create mice that were responsive to denosumab, knock‐in technology was used to replace exon 5 from murine RANKL with its human ortholog. The resulting “huRANKL” mice exclusively express chimeric (human/murine) RANKL that was measurable with a human RANKL assay and that maintained bone resorption at slightly reduced levels versus wildtype controls. In young huRANKL mice, denosumab and OPG‐Fc each reduced trabecular osteoclast surfaces by 95% and increased bone density and volume. In adult huRANKL mice, denosumab reduced bone resorption, increased cortical and cancellous bone mass, and improved trabecular microarchitecture. These huRANKL mice have potential utility for characterizing the activity of denosumab in a variety of murine bone disease models.


Annals of the Rheumatic Diseases | 2010

Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression

Gisela Ruiz Heiland; Karin Zwerina; Wolfgang Baum; Trayana Kireva; Jörg H W Distler; Mario Grisanti; Frank Asuncion; Xiadong Li; Michael S. Ominsky; William G. Richards; Georg Schett; Jochen Zwerina

Introduction Inflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation. Methods TNF transgenic (hTNFtg) mice were treated with neutralising antibodies against TNF, Dkk-1 or a combination of both agents. Systemic bone architecture was analysed by bone histomorphometry. The expression of β-catenin, osteoprotegerin and osteocalcin was analysed. In vitro, primary osteoblasts were stimulated with TNF and analysed for their metabolic activity and expression of Dkk-1 and sclerostin. Sclerostin expression and osteocyte death upon Dkk-1 blockade were analysed in vivo. Results Neutralisation of Dkk-1 completely protected hTNFtg mice from inflammatory bone loss by preventing TNF-mediated impaired osteoblast function and enhanced osteoclast activity. These findings were accompanied by enhanced skeletal expression of β-catenin, osteocalcin and osteoprotegerin. In vitro, TNF rapidly increased Dkk-1 expression in primary osteoblasts and effectively blocked osteoblast differentiation. Moreover, blockade of Dkk-1 not only rescued impaired osteoblastogenesis but also neutralised TNF-mediated sclerostin expression in fully differentiated osteoblasts in vitro and in vivo. Conclusions These findings indicate that low bone formation and expression of Dkk-1 trigger inflammatory bone loss. Dkk-1 blocks osteoblast differentiation, induces sclerostin expression and leads to osteocyte death. Inhibition of Dkk-1 may thus be considered as a potent strategy to protect bone from inflammatory damage.


Journal of Bone and Mineral Research | 2008

RANKL inhibition with osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectomized rats.

Michael S. Ominsky; Xiaodong Li; Frank Asuncion; Mauricio Barrero; Kelly Warmington; Denise Dwyer; Marina Stolina; Zhaopo Geng; Mario Grisanti; Hong-Lin Tan; Timothy J. Corbin; James McCabe; William Scott Simonet; Hua Z. Ke; Paul J. Kostenuik

Introduction: Ovariectomy (OVX) results in bone loss caused by increased bone resorption. RANKL is an essential mediator of bone resorption. We examined whether the RANKL inhibitor osteoprotegerin (OPG) would preserve bone volume, density, and strength in OVX rats.


Journal of Bone and Mineral Research | 2005

RANKL is a Marker and Mediator of Local and Systemic Bone Loss in Two Rat Models of Inflammatory Arthritis

Marina Stolina; Stephen Adamu; Mike Ominsky; Denise Dwyer; Frank Asuncion; Zhaopo Geng; Scot Middleton; Heather Brown; Jim Pretorius; Georg Schett; Brad Bolon; Ulrich Feige; Debra Zack; Paul J. Kostenuik

RANKL is an essential mediator of bone erosions, but the role of RANKL in systemic bone loss had not been studied in arthritis. RANKL protein was increased in rat joint extracts and serum at the earliest stages of arthritis. Osteoprotegerin (OPG) treatment reversed local and systemic bone loss, suggesting that RANKL is both a marker and mediator of bone loss in arthritis.


Journal of Bone and Mineral Research | 2011

Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury.

Xiaodong Li; Mario Grisanti; Wei Fan; Frank Asuncion; Hong-Lin Tan; Denise Dwyer; Chun-Ya Han; Longchuan Yu; Jae Lee; Edward Lee; Mauricio Barrero; Pam Kurimoto; Qing-Tian Niu; Zhaopo Geng; Aaron George Winters; Tom Horan; Shirley Steavenson; Frederick W. Jacobsen; Qing Chen; Raj Haldankar; Jennifer Lavallee; Barbara Tipton; Mark Daris; Jackie Zeqi Sheng; Hsieng S. Lu; Kristi Daris; Rohini Deshpande; Eliane G. Valente; Hossein Salimi-Moosavi; Paul J. Kostenuik

The physiological role of Dickkopf‐1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1‐Ab) that blocked Dkk1 binding to both low density lipoprotein receptor‐related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1‐Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.


Bone | 2009

Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin

Xiaodong Li; Michael S. Ominsky; Marina Stolina; Kelly Warmington; Zhaopo Geng; Qing-Tian Niu; Frank Asuncion; Hong-Lin Tan; Mario Grisanti; Denise Dwyer; Steven Adamu; Hua Zhu Ke; W. Scott Simonet; Paul J. Kostenuik

Orchiectomized (ORX) rats were used to examine the extent to which their increased bone resorption and decreased bone density might relate to increases in RANKL, an essential cytokine for bone resorption. Serum testosterone declined by >95% in ORX rats 1 and 2 weeks after surgery (p<0.05 versus sham controls), with no observed changes in serum RANKL. In contrast, RANKL in bone marrow plasma and bone marrow cell extracts was significantly increased (by approximately 100%) 1 and 2 weeks after ORX. Regression analyses of ORX and sham controls revealed a significant inverse correlation between testosterone and RANKL levels measured in marrow cell extracts (R=-0.58), while marrow plasma RANKL correlated positively with marrow plasma TRACP-5b, an osteoclast marker (R=0.63). The effects of RANKL inhibition were then studied by treating ORX rats for 6 weeks with OPG-Fc (10 mg/kg, twice/week SC) or with PBS, beginning immediately after surgery. Sham controls were treated with PBS. Vehicle-treated ORX rats showed significant deficits in BMD of the femur/tibia and lower trabecular bone volume in the distal femur (p<0.05 versus sham). OPG-Fc treatment of ORX rats increased femur/tibia BMD and trabecular bone volume to levels that significantly exceeded values for ORX or sham controls. OPG-Fc reduced trabecular osteoclast surfaces in ORX rats by 99%, and OPG-Fc also prevented ORX-related increases in endocortical eroded surface and ORX-related reductions in periosteal bone formation rate. Micro-CT of lumbar vertebrae from OPG-Fc-treated ORX rats demonstrated significantly greater cortical and trabecular bone volume and density versus ORX-vehicle controls. In summary, ORX rats exhibited increased RANKL protein in bone marrow plasma and in bone marrow cells, with no changes in serum RANKL. Data from regression analyses were consistent with a potential role for testosterone in suppressing RANKL production in bone marrow, and also suggested that soluble RANKL in bone marrow might promote bone resorption. RANKL inhibition prevented ORX-related deficits in trabecular BMD, trabecular architecture, and periosteal bone formation while increasing cortical and trabecular bone volume and density. These results support the investigation of RANKL inhibition as a strategy for preventing bone loss associated with androgen ablation or deficiency.


Toxicologic Pathology | 2004

The candidate neuroprotective agent artemin induces autonomic neural dysplasia without preventing peripheral nerve dysfunction.

Brad Bolon; Shuqian Jing; Frank Asuncion; Sheila Scully; Marlese Pisegna; Gwyneth Van; Zheng Hu; Yan Bin Yu; Hosung Min; Ken Wild; Robert Rosenfeld; John Tarpley; Josette Carnahan; Diane Duryea; Dave Hill; Steve Kaufman; Xiao-Qiang Yan; Todd Juan; Kathy Christensen; James McCabe; W. Scott Simonet

Artemin (ART) signals through the GFRα—3/RET receptor complex to support sympathetic neuron development. Here we show that ART also influences autonomic elements in adrenal medulla and enteric and pelvic ganglia. Transgenic mice over-expressing Art throughout development exhibited systemic autonomic neural lesions including fusion of adrenal medullae with adjacent paraganglia, adrenal medullary dysplasia, and marked enlargement of sympathetic (superior cervical and sympathetic chain ganglia) and parasympathetic (enteric, pelvic) ganglia. Changes began by gestational day 12.5 and formed progressively larger masses during adulthood. Art supplementation in wild type adult mice by administering recombinant protein or an Art-bearing retroviral vector resulted in hyperplasia or neuronal metaplasia at the adrenal corticomedullary junction. Expression data revealed that Gfrα—3 is expressed during development in the adrenal medulla, sensory and autonomic ganglia and their projections, while Art is found in contiguous mesenchymal domains (especially skeleton) and in certain nerves. Intrathecal Art therapy did not reduce hypalgesia in rats following nerve ligation. These data (1) confirm that ART acts as a differentiation factor for autonomic (chiefly sympathoadrenal but also parasympathetic) neurons, (2) suggest a role for ART overexpression in the genesis of pheochromocytomas and paragangliomas, and (3) indicate that ART is not a suitable therapy for peripheral neuropathy.


Bone | 2012

Bone turnover markers in peripheral blood and marrow plasma reflect trabecular bone loss but not endocortical expansion in aging mice

Mohammad Shahnazari; Denise Dwyer; Vivian Chu; Frank Asuncion; Marina Stolina; Michael S. Ominsky; Paul J. Kostenuik; Bernard P. Halloran

We examined age-related changes in biochemical markers and regulators of osteoblast and osteoclast activity in C57BL/6 mice to assess their utility in explaining age-related changes in bone. Several recently discovered regulators of osteoclasts and osteoblasts were also measured to assess concordance between their systemic levels versus their levels in marrow plasma, to which bone cells are directly exposed. MicroCT of 6-, 12-, and 24-month-old mice indicated an early age-related loss of trabecular bone volume and surface, followed by endocortical bone loss and periosteal expansion. Trabecular bone loss temporally correlated with reductions in biomarkers of bone formation and resorption in both peripheral blood and bone marrow. Endocortical bone loss and periosteal bone gain were not reflected in these protein biomarkers, but were well correlated with increased expression of osteocalcin, rank, tracp5b, and cathepsinK in RNA extracted from cortical bone. While age-related changes in bone turnover markers remained concordant in blood versus marrow, aging led to divergent changes in blood versus marrow for the bone cell regulators RANKL, OPG, sclerostin, DKK1, and serotonin. Bone expression of runx2 and osterix increased progressively with aging and was associated with an increase in the number of osteoprogenitors and osteoclast precursors. In summary, levels of biochemical markers of bone turnover in blood and bone marrow plasma were predictive of an age-related loss of trabecular surfaces in adult C57BL/6 mice, but did not predict gains in cortical surfaces resulting from cortical expansion. Unlike these turnover markers, a panel of bone cell regulatory proteins exhibited divergent age-related changes in marrow versus peripheral blood, suggesting that their circulating levels may not reflect local levels to which osteoclasts and osteoblasts are directly exposed.


American Journal of Pathology | 2009

Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor.

Masanobu Ohishi; Riccardo Chiusaroli; Michael S. Ominsky; Frank Asuncion; Clare Thomas; Richa Khatri; Paul Kostenuik; Ernestina Schipani

Intracortical porosities and marrow fibrosis are hallmarks of hyperparathyroidism and are present in bones of transgenic mice expressing constitutively active parathyroid hormone/parathyroid hormone-related protein receptors (PPR*Tg). Cortical porosity is the result of osteoclast activity; however, the etiology of marrow fibrosis is poorly understood. While osteoclast numbers and activity are regulated by osteoprotegerin (OPG), bisphosphonates suppress osteoclast activity but not osteoclast numbers. We therefore used OPG and bisphosphonates to evaluate the extent to which osteoclasts, as opposed to bone resorption, regulate marrow fibrosis in PPR*Tg mice after treatment of animals with vehicle, OPG, alendronate, or zoledronate. All three agents similarly increased trabecular bone volume in both PPR*Tg and control mice, suggesting that trabecular bone resorption was comparably suppressed by these agents. However, the number of trabecular osteoclasts was greatly decreased by OPG but not by either alendronate or zoledronate. Furthermore, intracortical porosity and marrow fibrosis were virtually abolished by OPG treatment, whereas alendronate and zoledronate only partially reduced these two parameters. The greater reductions in cortical porosity and increments in cortical bone mineral density with OPG in PPR*Tg mice were associated with greater improvements in bone strength. The differential effect of OPG versus bisphosphonates on marrow fibrosis, despite similar effects on trabecular bone volume, suggests that marrow fibrosis was related not only to bone resorption but also to the presence of osteoclasts.

Collaboration


Dive into the Frank Asuncion's collaboration.

Researchain Logo
Decentralizing Knowledge