Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Breinig is active.

Publication


Featured researches published by Frank Breinig.


Nature Reviews Microbiology | 2006

Yeast viral killer toxins: lethality and self-protection

Manfred J. Schmitt; Frank Breinig

Since the discovery of toxin-secreting killer yeasts more than 40 years ago, research into this phenomenon has provided insights into eukaryotic cell biology and virus–host-cell interactions. This review focuses on the most recent advances in our understanding of the basic biology of virus-carrying killer yeasts, in particular the toxin-encoding killer viruses, and the intracellular processing, maturation and toxicity of the viral protein toxins. The strategy of using eukaryotic viral toxins to effectively penetrate and eventually kill a eukaryotic target cell will be discussed, and the cellular mechanisms of self-defence and protective immunity will also be addressed.


Cell | 2002

Kre1p, the Plasma Membrane Receptor for the Yeast K1 Viral Toxin

Frank Breinig; Donald J. Tipper; Manfred J. Schmitt

Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.


EMBO Reports | 2010

RNA-directed DNA methylation and plant development require an IWR1-type transcription factor

Tatsuo Kanno; Etienne Bucher; Lucia Daxinger; Bruno Huettel; David P. Kreil; Frank Breinig; Marc Lind; Manfred J. Schmitt; Stacey A. Simon; Sai Guna Ranjan Gurazada; Blake C. Meyers; Zdravko J. Lorković; Antonius J. M. Matzke; Marjori Matzke

RNA‐directed DNA methylation (RdDM) in plants requires two RNA polymerase (Pol) II‐related RNA polymerases, namely Pol IV and Pol V. A genetic screen designed to reveal factors that are important for RdDM in a developmental context in Arabidopsis identified DEFECTIVE IN MERISTEM SILENCING 4 (DMS4). Unlike other mutants defective in RdDM, dms4 mutants have a pleiotropic developmental phenotype. The DMS4 protein is similar to yeast IWR1 (interacts with RNA polymerase II), a conserved putative transcription factor that interacts with Pol II subunits. The DMS4 complementary DNA partly complements the K1 killer toxin hypersensitivity of a yeast iwr1 mutant, suggesting some functional conservation. In the transgenic system studied, mutations in DMS4 directly or indirectly affect Pol IV‐dependent secondary short interfering RNAs, Pol V‐mediated RdDM, Pol V‐dependent synthesis of intergenic non‐coding RNA and expression of many Pol II‐driven genes. These data suggest that DMS4 might be a regulatory factor for several RNA polymerases, thus explaining its diverse roles in the plant.


Applied and Environmental Microbiology | 2004

Viral Preprotoxin Signal Sequence Allows Efficient Secretion of Green Fluorescent Protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe

Antje Eiden-Plach; Tatjana Zagorc; Tanja Heintel; Yvonne Carius; Frank Breinig; Manfred J. Schmitt

ABSTRACT Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.


The EMBO Journal | 2006

Retrotranslocation of a viral A/B toxin from the yeast endoplasmic reticulum is independent of ubiquitination and ERAD

Susanne Heiligenstein; Katrin Eisfeld; Tanja Sendzik; Natalia Jimenéz-Becker; Frank Breinig; Manfred J. Schmitt

K28 is a viral A/B toxin that traverses eukaryotic cells by endocytosis and retrograde transport through the secretory pathway. Here we show that toxin retrotranslocation from the endoplasmic reticulum (ER) requires Kar2p/BiP, Pdi1p, Scj1p, Jem1p, and proper maintenance of Ca2+ homeostasis. Neither cytosolic chaperones nor Cdc48p/Ufd1p/Npl4p complex components or proteasome activity are required for ER exit, indicating that K28 retrotranslocation is mechanistically different from classical ER‐associated protein degradation (ERAD). We demonstrate that K28 exits the ER in a heterodimeric but unfolded conformation and dissociates into its subunits as it emerges into the cytosol where β is ubiquitinated and degraded. ER export and in vivo toxicity were not affected in a lysine‐free K28 variant nor under conditions when ubiquitination and proteasome activity was blocked. In contrast, toxin uptake from the plasma membrane required Ubc4p (E2) and Rsp5p (E3) and intoxicated ubc4 and rsp5 mutants accumulate K28 at the cell surface incapable of toxin internalization. We propose a model in which ubiquitination is involved in the endocytic pathway of the toxin, while ER‐to‐cytosol retrotranslocation is independent of ubiquitination, ERAD and proteasome activity.


Applied and Environmental Microbiology | 2006

Cell Surface Expression of Bacterial Esterase A by Saccharomyces cerevisiae and Its Enhancement by Constitutive Activation of the Cellular Unfolded Protein Response

Frank Breinig; Björn Diehl; Sabrina Rau; Christian Zimmer; Helmut Schwab; Manfred J. Schmitt

ABSTRACT Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.


Fems Immunology and Medical Microbiology | 2003

Extensive MHC class I-restricted CD8 T lymphocyte responses against various yeast genera in humans

Tanja Heintel; Frank Breinig; Manfred J. Schmitt; Andreas Meyerhans

The human cellular immune response against 14 distantly related yeast species was analyzed by intracellular cytokine staining of lymphocytes after ex vivo stimulation of whole blood. While the CD4 T cell response was marginal, extensive MHC class I-restricted CD8 T cell responses were detected against a number of species including spoiling, environmental and human pathogenic yeasts. The yeast-specific CD8 T cells expressed interferon-gamma but lacked expression of CD27 and CCR7, indicating that they were end-differentiated effector memory cells. Mainly intact yeast cells rather than spheroplasts were able to induce cytokine expression in T cells demonstrating that the dominant immunogens were located in the yeast cell wall. Together these data underline the importance of the cellular immune response in protecting humans against yeast and fungal infections. And, from another perspective, recombinant yeast suggests itself as a potential vaccine candidate to efficiently induce antigen-specific CD8 T cell responses.


Microbiology | 2002

Mutational analysis of K28 preprotoxin processing in the yeast Saccharomyces cerevisiae

Frank Riffer; Katrin Eisfeld; Frank Breinig; Manfred J. Schmitt

K28 killer strains of Saccharomyces cerevisiae are permanently infected with a cytoplasmic persisting dsRNA virus encoding a secreted alpha/beta heterodimeric protein toxin that kills sensitive cells by cell-cycle arrest and inhibition of DNA synthesis. In vivo processing of the 345 aa toxin precursor (preprotoxin; pptox) involves multiple internal and carboxy-terminal cleavage events by the prohormone convertases Kex2p and Kex1p. By site-directed mutagenesis of the preprotoxin gene and phenotypic analysis of its in vivo effects it is now demonstrated that secretion of a biological active virus toxin requires signal peptidase cleavage after Gly(36) and Kex2p-mediated processing at the alpha subunit N terminus (after Glu-Arg(49)), the alpha subunit C terminus (after Ser-Arg(149)) and at the beta subunit N terminus (after Lys-Arg(245)). The mature C terminus of the beta subunit is trimmed by Kex1p, which removes the terminal Arg(345) residue, thus uncovering the toxins endoplasmic reticulum targeting signal (HDEL) which--in a sensitive target cell--is essential for retrograde toxin transport. Interestingly, both toxin subunits are covalently linked by a single disulfide bond between alpha-Cys(56) and beta-Cys(340), and expression of a mutant toxin in which beta-Cys(340) had been replaced by Ser(340) resulted in the secretion of a non-toxic alpha/beta heterodimer that is blocked in retrograde transport and incapable of entering the yeast cell cytosol, indicating that one important in vivo function of beta-Cys(340) might be to ensure accessibility of the toxins beta subunit C terminus to the HDEL receptor of the target cell.


Fems Immunology and Medical Microbiology | 2003

Specific activation of CMV-primed human T lymphocytes by cytomegalovirus pp65 expressed in fission yeast

Frank Breinig; Tanja Heintel; Annette Schumacher; Andreas Meyerhans; Manfred J. Schmitt

Threatening virus infections constantly illustrate the growing need for novel vaccines that specifically induce efficient T cell-mediated immune responses. In this study, we used a human whole blood assay to determine the activation of antigen-specific human T lymphocytes by a viral antigen of human cytomegalovirus (HCMV). The major HCMV tegument protein pp65, recombinantly expressed in fission yeast (Schizosaccharomyces pombe), specifically activated antigen-specific CD4- and CD8-positive memory T cells in blood of HCMV seropositive donors. Moreover, the immune response against recombinant pp65, in particular that of CD8 class I major histocompatibility complex-restricted cytotoxic T cells, was similar to the response against the intact HCMV. Since fission yeast cells per se did not activate a significant number of human T lymphocytes ex vivo, the system described here might represent a novel approach in vaccine development as well as in the identification of vaccine candidates directly from human whole blood.


Vaccine | 2011

Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes

Silvia Boschi Bazan; Gernot Geginat; Tanja Breinig; Manfred J. Schmitt; Frank Breinig

Yeasts of the genus Saccharomyces expressing recombinant antigens are currently evaluated as candidate T cell vaccines. Here, we compared the interaction kinetics between four biotechnologically relevant yeast genera (Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis and Pichia pastoris) and human dendritic cells as well as the involvement of Dectin-1 and mannose receptor in phagocytosis. Further, we analyzed the activation capacity of recombinant yeasts expressing ovalbumin (OVA) either intracellular, extracellular or surface-displayed by OVA-specific CD8 T lymphocytes. We found that the kinetic patterns of yeast uptake by phagocytic cells varied between the tested yeast genera and that both genus and subcellular OVA antigen localization influenced the strength of T cell activation. In particular, in S. cerevisiae, a secreted antigen was less effectively delivered than its cytosolic variant, whereas most efficient antigen delivery with P. pastoris was obtained by cell surface bound antigen. Our data indicate that protein secretion might not be an effective delivery pathway in yeast.

Collaboration


Dive into the Frank Breinig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge