Frank Chuang
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Chuang.
Science | 2009
Wolfgang Hübner; Gregory P. McNerney; Ping Chen; Benjamin M. Dale; Ronald E. Gordon; Frank Chuang; Xiao Dong Li; David M. Asmuth; Thomas Huser; Benjamin K. Chen
The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized “buttons” containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.
Cancer Research | 2009
Randie H. Kim; Jodi M. Coates; Tawnya L. Bowles; Gregory P. McNerney; Julie L. Sutcliffe; Jae U. Jung; Regina Gandour-Edwards; Frank Chuang; Richard J. Bold; Hsing Jien Kung
Arginine deprivation as an anticancer therapy has historically been met with limited success. The development of pegylated arginine deiminase (ADI-PEG20) has renewed interest in arginine deprivation for the treatment of some cancers. The efficacy of ADI-PEG20 is directly correlated with argininosuccinate synthetase (ASS) deficiency. CWR22Rv1 prostate cancer cells do not express ASS, the rate-limiting enzyme in arginine synthesis, and are susceptible to ADI-PEG20 in vitro. Interestingly, apoptosis by 0.3 microg/mL ADI-PEG20 occurs 96 hours posttreatment and is caspase independent. The effect of ADI-PEG20 in vivo reveals reduced tumor activity by micropositron emission tomography as well as reduced tumor growth as a monotherapy and in combination with docetaxel against CWR22Rv1 mouse xenografts. In addition, we show autophagy is induced by single amino acid depletion by ADI-PEG20. Here, autophagy is an early event that is detected within 1 to 4 hours of 0.3 microg/mL ADI-PEG20 treatment and is an initial protective response to ADI-PEG20 in CWR22Rv1 cells. Significantly, the inhibition of autophagy by chloroquine and Beclin1 siRNA knockdown enhances and accelerates ADI-PEG20-induced cell death. PC3 cells, which express reduced ASS, also undergo autophagy and are responsive to autophagy inhibition and ADI-PEG20 treatment. In contrast, LNCaP cells highly express ASS and are therefore resistant to both ADI-PEG20 and autophagic inhibition. These data point to an interrelationship among ASS deficiency, autophagy, and cell death by ADI-PEG20. Finally, a tissue microarray of 88 prostate tumor samples lacked expression of ASS, indicating ADI-PEG20 is a potential novel therapy for the treatment of prostate cancer
Cell Host & Microbe | 2011
Benjamin M. Dale; Gregory P. McNerney; Deanna L. Thompson; Wolfgang Hübner; Kevin de los Reyes; Frank Chuang; Thomas Huser; Benjamin K. Chen
HIV-1 can infect T cells by cell-free virus or by direct virion transfer between cells through cell contact-induced structures called virological synapses (VS). During VS-mediated infection, virions accumulate within target cell endosomes. We show that after crossing the VS, the transferred virus undergoes both maturation and viral membrane fusion. Following VS transfer, viral membrane fusion occurs with delayed kinetics and transferred virions display reduced sensitivity to patient antisera compared to mature, cell-free virus. Furthermore, particle fusion requires that the transferred virions undergo proteolytic maturation within acceptor cell endosomes, which occurs over several hours. Rapid, live cell confocal microscopy demonstrated that viral fusion can occur in compartments that have moved away from the VS. Thus, HIV particle maturation activates viral fusion in target CD4+ T cell endosomes following transfer across the VS and may represent a pathway by which HIV evades antibody neutralization.
Journal of Immunology | 2000
Frank Chuang; Massimo Sassaroli; Jay C. Unkeless
Human neutrophils (PMNs) express two receptors for the Fc domain of IgG: the transmembrane FcγRIIA, whose cytosolic sequence contains an immunoreceptor tyrosine-based activation motif, and the GPI-anchored FcγRIIIB. Cross-linking of FcγRIIIB induces cell activation, but the mechanism is still uncertain. We have used mAbs to cross-link selectively each of the two receptors and to assess their signaling phenotypes and functional relation. Cross-linking of FcγRIIIB induces intracellular Ca2+ release and receptor capping. The Ca2+ response is blocked by wortmannin and by N,N-dimethylsphingosine, inhibitors of phosphatidylinositol 3-kinase and sphingosine kinase, respectively. Identical dose-response curves are obtained for the Ca2+ release stimulated by cross-linking FcγRIIA, implicating these two enzymes in a common signaling pathway. Wortmannin also inhibits capping of both receptors, but not receptor endocytosis. Fluorescence microscopy in double-labeled PMNs demonstrates that FcγRIIA colocalizes with cross-linked FcγRIIIB. The signaling phenotypes of the two receptors diverge only under frustrated phagocytosis conditions, where FcγRIIIB bound to substrate-immobilized Ab does not elicit cell spreading. We propose that FcγRIIIB signaling is conducted by molecules of FcγRIIA that are recruited to protein/lipid domains induced by clustered FcγRIIIB and, thus, are brought into juxtaposition for immunoreceptor tyrosine-based activation motif phosphorylation and activation of PMNs.
International Journal of Radiation Oncology Biology Physics | 1991
Mark H. Phillips; Marc L. Kessler; Frank Chuang; Kenneth A. Frankel; John T. Lyman; Jacob I. Fabrikant; Richard P. Levy
Magnetic resonance imaging (MRI) has been incorporated with stereotactic cerebral angiography and computed tomography (CT) in the treatment planning process of heavy ion radiosurgery of intracranial arteriovenous malformations (AVMs). Correlation of the images of the AVM and normal tissue on each of these neuroradiological imaging modalities is achieved by means of fiducial markers. The computerized transfer of angiographic information to the CT images regarding the size, shape, and location of the abnormal vasculature has been described in an earlier report. A separate computer program calculates a fit between individual fiducial markers on the CT and MR images that enables the transfer of contours between the two imaging modalities. The MR images aid in the determination of the 3-dimensional shape of the AVM, adding to the information derived from the two angiographic projections. Currently, MRI cannot replace cerebral angiography in delineating the entire arterial phase of the AVM. Magnetic resonance imaging is invaluable in the treatment planning of angiographically-occult AVMs, determining the location, size, and shape of the volume to be treated. Correlation of the CT and MRI images allows for the transfer of CT-calculated isodose contours to the MRI images to aid in the determination of optimal treatment plans.
Electrophoresis | 2008
George M. Dougherty; Klint A. Rose; Jeffrey B.-H. Tok; Satinderpall S. Pannu; Frank Chuang; Michael Y. Sha; Gabriela Chakarova; Sharron G. Penn
Metallic nanoparticles suspended in aqueous solutions and functionalized with chemical and biological surface coatings are important elements in basic and applied nanoscience research. Many applications require an understanding of the electrokinetic or colloidal properties of such particles. We describe the results of experiments to measure the zeta potential of metallic nanorod particles in aqueous saline solutions, including the effects of pH, ionic strength, metallic composition, and surface functionalization state. Particle substrates tested include gold, silver, and palladium monometallic particles as well as gold/silver bimetallic particles. Surface functionalization conditions included 11‐mercaptoundecanoic acid (MUA), mercaptoethanol (ME), and mercaptoethanesulfonic acid (MESA) self‐assembled monolayers (SAMs), as well as MUA layers subsequently derivatized with proteins. For comparison, we present zeta potential data for typical charge‐stabilized polystyrene particles. We compare experimental zeta potential data with theoretically predicted values for SAM‐coated and bimetallic particles. The results of these studies are useful in predicting and controlling the aggregation, adhesion, and transport of functionalized metallic nanoparticles within microfluidic devices and other systems.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Chun Changou; Yun-Ru Chen; Li Xing; Yun Yen; Frank Chuang; R. Holland Cheng; Richard J. Bold; David K. Ann; Hsing Jien Kung
Significance Nutritional starvation therapy is under intensive investigation because it provides a potentially lower toxicity with higher specificity than conventional cancer therapy. Autophagy, often triggered by starvation, represents an energy-saving, pro-survival cellular function; however, dysregulated autophagy could also lead to cell death, a process distinct from the classic caspase-dependent apoptosis. This study shows how arginine starvation specifically kills tumor cells by a novel mechanism involving mitochondria dysfunction, reactive oxygen species generation, DNA leakage, and chromatin autophagy, where leaked DNA is captured by giant autophagosomes. These results not only provide insights into the fundamental process of metabolic stress-based cancer therapy but also uncover a new cell-death mechanism. Autophagy is the principal catabolic prosurvival pathway during nutritional starvation. However, excessive autophagy could be cytotoxic, contributing to cell death, but its mechanism remains elusive. Arginine starvation has emerged as a potential therapy for several types of cancers, owing to their tumor-selective deficiency of the arginine metabolism. We demonstrated here that arginine depletion by arginine deiminase induces a cytotoxic autophagy in argininosuccinate synthetase (ASS1)-deficient prostate cancer cells. Advanced microscopic analyses of arginine-deprived dying cells revealed a novel phenotype with giant autophagosome formation, nucleus membrane rupture, and histone-associated DNA leakage encaptured by autophagosomes, which we shall refer to as chromatin autophagy, or chromatophagy. In addition, nuclear inner membrane (lamin A/C) underwent localized rearrangement and outer membrane (NUP98) partially fused with autophagosome membrane. Further analysis showed that prolonged arginine depletion impaired mitochondrial oxidative phosphorylation function and depolarized mitochondrial membrane potential. Thus, reactive oxygen species (ROS) production significantly increased in both cytosolic and mitochondrial fractions, presumably leading to DNA damage accumulation. Addition of ROS scavenger N-acetyl cysteine or knockdown of ATG5 or BECLIN1 attenuated the chromatophagy phenotype. Our data uncover an atypical autophagy-related death pathway and suggest that mitochondrial damage is central to linking arginine starvation and chromatophagy in two distinct cellular compartments.
The Journal of Membrane Biology | 1993
Martin Fein; Jay C. Unkeless; Frank Chuang; Massimo Sassaroli; Rui da Costa; Heikki Väänänen; Josef Eisinger
Lipid analogues and glycosylphosphati-dylinositol (GPI)-anchored proteins incorporated in glass-supported phospholipid bilayers (SBL) were coupled to small (30 nm diameter) fluorescent beads whose motion in the liquid phase was tracked by intensified fluorescence video microscopy. Streptavidin (St), covalently attached to the carboxyl modified surface of the polystyrene bead, bound either the biotinylated membrane component, or a biotinylated monoclonal antibody (mAb) directed against a specific membrane constituent. The positions of the beads tethered to randomly diffusing membrane molecules were recorded at 0.2 sec intervals for about l min. The mean square displacement (ϱ) of the beads was found to be a linear function of diffusion time t, and the diffusion coefficient, D, was derived from the relation, ϱ(t) = 4Dt. The values of D for biotinylated phosphatidylethanolamine (Bi-PE) dispersed in an egg lecithin: cholesterol (80:20%) bilayer obtained by this methodology range from 0.05 to 0.6 μm2/sec with an average of 〈D〉 = 0.26 μm2/sec, similar to the value of 〈D〉 = 0.24 μm2/sec for fluorescein-conjugated phosphati-dylethanolamine (Fl-PE) linked to St-coupled beads by the anti-fluorescein mAb 4-4-20 or its Fab fragment. These values of D are comparable to those reported for Fl-PE linked to 30 nm gold particles but are several times lower than that of Fl-PE in the same planar bilayer as measured by fluorescence photobleaching recovery, D = 1.3 μm2sec. The mobilities of two GPI-anchored proteins in similar SBL were also determined by use of the appropriate biotinylated mAb and were found to be 〈D〉 = 0.25 and 0.56 μm2/sec for the decay accelerating factor (DAF, CD55) and the human FcγRIIIB (CD16) receptors, respectively. The methodology described here is suitable for tracking any accessible membrane component.
Cancer Research | 2014
Demet Candas; Chung Ling Lu; Ming Fan; Frank Chuang; Colleen Sweeney; Alexander D. Borowsky; Jian Jian Li
The MAPK phosphatase MKP1 (DUSP1) is overexpressed in many human cancers, including chemoresistant and radioresistant breast cancer cells, but its functional contributions in these settings are unclear. Here, we report that after cell irradiation, MKP1 translocates into mitochondria, where it prevents apoptotic induction by limiting accumulation of phosphorylated active forms of the stress kinase JNK. Increased levels of mitochondrial MKP1 after irradiation occurred in the mitochondrial inner membrane space. Notably, cell survival regulated by mitochondrial MKP1 was responsible for conferring radioresistance in HER2-overexpressing breast cancer cells, due to the fact that MKP1 serves as a major downstream effector in the HER2-activated RAF-MEK-ERK pathway. Clinically, we documented MKP1 expression exclusively in HER2-positive breast tumors, relative to normal adjacent tissue from the same patients. MKP1 overexpression was also detected in irradiated HER2-positive breast cancer stem-like cells (HER2(+)/CD44(+)/CD24(-/low)) isolated from a radioresistant breast cancer cell population after long-term radiation treatment. MKP1 silencing reduced clonogenic survival and enhanced radiosensitivity in these stem-like cells. Combined inhibition of MKP1 and HER2 enhanced cell killing in breast cancer. Together, our findings identify a new mechanism of resistance in breast tumors and reveal MKP1 as a novel therapeutic target for radiosensitization.
Journal of Virology | 2017
Christopher Phillip Chen; Yuanzhi Lyu; Frank Chuang; Kazushi Nakano; Chie Izumiya; Di Jin; Mel Campbell; Yoshihiro Izumiya
ABSTRACT Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposis sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposis sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression.