Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeffrey B.-H. Tok is active.

Publication


Featured researches published by Jeffrey B.-H. Tok.


Advanced Materials | 2013

25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress

Mallory L. Hammock; Alex Chortos; Benjamin C.-K. Tee; Jeffrey B.-H. Tok; Zhenan Bao

Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.


Nature Communications | 2011

Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s

Yeohoon Yoon; Steve Park; Joon Hak Oh; Sanghyun Hong; Luckshitha Suriyasena Liyanage; Huiliang Wang; Satoshi Morishita; Nishant Patil; Young Jun Park; Jong Jin Park; Andrew J. Spakowitz; Giulia Galli; Francois Gygi; Philip H.-S. Wong; Jeffrey B.-H. Tok; Jong Min Kim; Zhenan Bao

Conjugated polymers, such as polyfluorene and poly(phenylene vinylene), have been used to selectively disperse semiconducting single-walled carbon nanotubes (sc-SWNTs), but these polymers have limited applications in transistors and solar cells. Regioregular poly(3-alkylthiophene)s (rr-P3ATs) are the most widely used materials for organic electronics and have been observed to wrap around SWNTs. However, no sorting of sc-SWNTs has been achieved before. Here we report the application of rr-P3ATs to sort sc-SWNTs. Through rational selection of polymers, solvent and temperature, we achieved highly selective dispersion of sc-SWNTs. Our approach enables direct film preparation after a simple centrifugation step. Using the sorted sc-SWNTs, we fabricate high-performance SWNT network transistors with observed charge-carrier mobility as high as 12 cm(2) V(-1) s(-1) and on/off ratio of >10(6). Our method offers a facile and a scalable route for separating sc-SWNTs and fabrication of electronic devices.


Advanced Materials | 2012

Transparent, Optical, Pressure‐Sensitive Artificial Skin for Large‐Area Stretchable Electronics

Marc Ramuz; Benjamin C.-K. Tee; Jeffrey B.-H. Tok; Zhenan Bao

Optical pressure sensors are highly responsive and are unaffected by surrounding parameters such as electronic noise, humidity, temperature, etc. A new type of optical pressure sensor is described that demonstrates the stretchability and transparency of a polydimethylsiloxane waveguide, while also serving as a substrate. The pressure sensors are both robust and easy to fabricate over a large area.


Nature | 2016

Intrinsically stretchable and healable semiconducting polymer for organic transistors

Jin Young Oh; Simon Rondeau-Gagné; Yu-Cheng Chiu; Alex Chortos; Franziska Lissel; Ging-Ji Nathan Wang; Bob C. Schroeder; Tadanori Kurosawa; Jeffrey Lopez; Toru Katsumata; Jie Xu; Chenxin Zhu; Xiaodan Gu; Won-Gyu Bae; Yeongin Kim; Lihua Jin; Jong Won Chung; Jeffrey B.-H. Tok; Zhenan Bao

Thin-film field-effect transistors are essential elements of stretchable electronic devices for wearable electronics. All of the materials and components of such transistors need to be stretchable and mechanically robust. Although there has been recent progress towards stretchable conductors, the realization of stretchable semiconductors has focused mainly on strain-accommodating engineering of materials, or blending of nanofibres or nanowires into elastomers. An alternative approach relies on using semiconductors that are intrinsically stretchable, so that they can be fabricated using standard processing methods. Molecular stretchability can be enhanced when conjugated polymers, containing modified side-chains and segmented backbones, are infused with more flexible molecular building blocks. Here we present a design concept for stretchable semiconducting polymers, which involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain is applied, while retaining high charge transport abilities. As a result, our polymer is able to recover its high field-effect mobility performance (more than 1 square centimetre per volt per second) even after a hundred cycles at 100 per cent applied strain. Organic thin-film field-effect transistors fabricated from these materials exhibited mobility as high as 1.3 square centimetres per volt per second and a high on/off current ratio exceeding a million. The field-effect mobility remained as high as 1.12 square centimetres per volt per second at 100 per cent strain along the direction perpendicular to the strain. The field-effect mobility of damaged devices can be almost fully recovered after a solvent and thermal healing treatment. Finally, we successfully fabricated a skin-inspired stretchable organic transistor operating under deformations that might be expected in a wearable device.


Nature Communications | 2015

A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

Ho-Hsiu Chou; Amanda Nguyen; Alex Chortos; John W. F. To; Chien Lu; Jianguo Mei; Tadanori Kurosawa; Won-Gyu Bae; Jeffrey B.-H. Tok; Zhenan Bao

Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skins colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.


Advanced Materials | 2015

Highly Skin‐Conformal Microhairy Sensor for Pulse Signal Amplification

Changhyun Pang; Ja Hoon Koo; Amanda Nguyen; Jeffrey M. Caves; Myung-Gil Kim; Alex Chortos; Kwanpyo Kim; Paul J. Wang; Jeffrey B.-H. Tok; Zhenan Bao

A bioinspired microhairy sensor is developed to enable ultraconformability on nonflat surfaces and significant enhancement in the signal-to-noise ratio of the retrieved signals. The device shows ≈12 times increase in the signal-to-noise ratio in the generated capacitive signals, allowing the ultraconformal microhair pressure sensors to be capable of measuring weak pulsations of internal jugular venous pulses stemming from a human neck.


Advanced Materials | 2014

A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature

Nguyen Thanh Tien; Sanghun Jeon; Do-Il Kim; Tran Quang Trung; Mi Jang; Byeong-Ung Hwang; Kyung-Eun Byun; Jihyun Bae; Eunha Lee; Jeffrey B.-H. Tok; Zhenan Bao; Nae-Eung Lee; Jong-Jin Park

Diverse signals generated from the sensing elements embedded in flexible electronic skins (e-skins) are typically interfered by strain energy generated through processes such as touching, bending, stretching or twisting. Herein, we demonstrate a flexible bimodal sensor that can separate a target signal from the signal by mechanical strain through the integration of a multi-stimuli responsive gate dielectric and semiconductor channel into the single field-effect transistor (FET) platform.


Science | 2017

Highly stretchable polymer semiconductor films through the nanoconfinement effect

Jie Xu; Sihong Wang; Ging-Ji Nathan Wang; Chenxin Zhu; Shaochuan Luo; Lihua Jin; Xiaodan Gu; Shucheng Chen; Vivian R. Feig; John W. F. To; Simon Rondeau-Gagné; Joonsuk Park; Bob C. Schroeder; Chien Lu; Jinyoung Oh; Yanming Wang; Yunhi Kim; He Henry Yan; Robert Sinclair; Dongshan Zhou; Gi Xue; Boris Murmann; Christian Linder; Wei Cai; Jeffrey B.-H. Tok; Jongwon Chung; Zhenan Bao

Trapping polymers to improve flexibility Polymer molecules at a free surface or trapped in thin layers or tubes will show different properties from those of the bulk. Confinement can prevent crystallization and oddly can sometimes give the chains more scope for motion. Xu et al. found that a conducting polymer confined inside an elastomer—a highly stretchable, rubber-like polymer—retained its conductive properties even when subjected to large deformations (see the Perspective by Napolitano). Science, this issue p. 59; see also p. 24 A high-performance conjugated polymer is combined with an elastomer to produce a fully stretchable transistor. Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.


Journal of the American Chemical Society | 2016

Hierarchical N-Doped Carbon as CO2 Adsorbent with High CO2 Selectivity from Rationally Designed Polypyrrole Precursor

John W. F. To; Jiajun He; Jianguo Mei; Reza Haghpanah; Zheng Chen; Tadanori Kurosawa; Shucheng Chen; Won-Gyu Bae; Lijia Pan; Jeffrey B.-H. Tok; Jennifer Wilcox; Zhenan Bao

Carbon capture and sequestration from point sources is an important component in the CO2 emission mitigation portfolio. In particular, sorbents with both high capacity and selectivity are required for reducing the cost of carbon capture. Although physisorbents have the advantage of low energy consumption for regeneration, it remains a challenge to obtain both high capacity and sufficient CO2/N2 selectivity at the same time. Here, we report the controlled synthesis of a novel N-doped hierarchical carbon that exhibits record-high Henrys law CO2/N2 selectivity among physisorptive carbons while having a high CO2 adsorption capacity. Specifically, our synthesis involves the rational design of a modified pyrrole molecule that can co-assemble with the soft Pluronic template via hydrogen bonding and electrostatic interactions to give rise to mesopores followed by carbonization. The low-temperature carbonization and activation processes allow for the development of ultrasmall pores (d < 0.5 nm) and preservation of nitrogen moieties, essential for enhanced CO2 affinity. Furthermore, our described work provides a strategy to initiate developments of rationally designed porous conjugated polymer structures and carbon-based materials for various potential applications.


Advanced Materials | 2013

A Rapid and Efficient Self‐Healing Thermo‐Reversible Elastomer Crosslinked with Graphene Oxide

Chao Wang; Nan Liu; Ranulfo Allen; Jeffrey B.-H. Tok; Yunpeng Wu; Fan Zhang; Yongsheng Chen; Zhenan Bao

A self-healing thermo-reversible elastomer is synthesized by cross-linking a hydrogen bonding polymer network with chemically-modified graphene oxide. This nanocomposite allows for both rapid and efficient self-healing (in only several minutes) at room temperature, without the need for any external stimuli (e.g., heating or light exposure), healing agents, plasticizers or solvents.

Collaboration


Dive into the Jeffrey B.-H. Tok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas O. Fischer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael C. Kao

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frank Chuang

University of California

View shared research outputs
Top Co-Authors

Avatar

George M. Dougherty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge