Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank-D. Böhmer is active.

Publication


Featured researches published by Frank-D. Böhmer.


Nature Reviews Cancer | 2006

Protein-tyrosine phosphatases and cancer

Arne Östman; Carina Hellberg; Frank-D. Böhmer

Tyrosine phosphorylation is an important signalling mechanism in eukaryotic cells. In cancer, oncogenic activation of tyrosine kinases is a common feature, and novel anticancer drugs have been introduced that target these enzymes. Tyrosine phosphorylation is also controlled by protein-tyrosine phosphatases (PTPs). Recent evidence has shown that PTPs can function as tumour suppressors. In addition, some PTPs, including SHP2, positively regulate the signalling of growth-factor receptors, and can be oncogenic. An improved understanding of how these enzymes function and how they are regulated might aid the development of new anticancer agents.


Trends in Cell Biology | 2001

Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases

Arne Östman; Frank-D. Böhmer

Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.


Molecular Cell | 2009

Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.

Chunaram Choudhary; J. Olsen; Christian Brandts; Jürgen Cox; Pavankumar N.G. Reddy; Frank-D. Böhmer; Volker Gerke; Dirk-E. Schmidt-Arras; Wolfgang E. Berdel; Carsten Müller-Tidow; Matthias Mann; Hubert Serve

Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly activates STAT5 and upregulates its targets, Pim-1/2, but fails to activate PI3K and MAPK signaling. Conversely, membrane targeting of Flt3-ITD strongly activates the MAPK and PI3K pathways, with diminished phosphorylation of STAT5. Global phosphoproteomics quantified 12,186 phosphorylation sites, confirmed compartment-dependent activation of these pathways and discovered many additional components of Flt3-ITD signaling. The differential activation of Akt and Pim kinases by ER-retained Flt3-ITD helped to identify their putative targets. Surprisingly, we find spatial regulation of tyrosine phosphorylation patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation.


Genes & Development | 2009

A phosphorylation-acetylation switch regulates STAT1 signaling

Oliver H. Krämer; Shirley K. Knauer; Georg Greiner; Enrico Jandt; Sigrid Reichardt; Karl-Heinz Gührs; Roland H. Stauber; Frank-D. Böhmer; Thorsten Heinzel

Cytokines such as interferons (IFNs) activate signal transducers and activators of transcription (STATs) via phosphorylation. Histone deacetylases (HDACs) and the histone acetyltransferase (HAT) CBP dynamically regulate STAT1 acetylation. Here we show that acetylation of STAT1 counteracts IFN-induced STAT1 phosphorylation, nuclear translocation, DNA binding, and target gene expression. Biochemical and genetic experiments altering the HAT/HDAC activity ratio and STAT1 mutants reveal that a phospho-acetyl switch regulates STAT1 signaling via CBP, HDAC3, and the T-cell protein tyrosine phosphatase (TCP45). Strikingly, inhibition of STAT1 signaling via CBP-mediated acetylation is distinct from the functions of this HAT in transcriptional activation. STAT1 acetylation induces binding of TCP45, which catalyzes dephosphorylation and latency of STAT1. Our results provide a deeper understanding of the modulation of STAT1 activity. These findings reveal a new layer of physiologically relevant STAT1 regulation and suggest that a previously unidentified balance between phosphorylation and acetylation affects cytokine signaling.


Journal of Biochemistry | 2011

Regulation of protein tyrosine phosphatases by reversible oxidation.

Arne Östman; Jeroen Frijhoff; Åsa Sandin; Frank-D. Böhmer

Oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTP), which leads to their reversible inactivation, has emerged as an important regulatory mechanism linking cellular tyrosine phosphorylation and signalling by reactive-oxygen or -nitrogen species (ROS, RNS). This review focuses on recent findings about the involved pathways, enzymes and biochemical mechanisms. Both the general cellular redox state and extracellular ligand-stimulated ROS production can cause PTP oxidation. Members of the PTP family differ in their intrinsic susceptibility to oxidation, and different types of oxidative modification of the PTP catalytic cysteine can occur. The role of PTP oxidation for physiological signalling processes as well as in different pathologies is described on the basis of well-investigated examples. Criteria to establish the causal involvement of PTP oxidation in a given process are proposed. A better understanding of mechanisms leading to selective PTP oxidation in a cellular context, and finding ways to pharmacologically modulate these pathways are important topics for future research.


Biochemical Pharmacology | 2000

Redox regulation of signal transduction in mammalian cells.

Peter Herrlich; Frank-D. Böhmer

This mini-review addresses the mechanism of ultraviolet-light-induced activation of receptor tyrosine kinases. The experimental approach into this mechanism revealed the existence of redox regulation of signal transduction in mammalian cells. It is postulated that, in addition to responsiveness to oxidative attacks from outside, redox regulation of specific redox-sensitive proteins likely represents an important physiological mechanism.


Journal of Biological Chemistry | 1998

Phosphotyrosine 1173 Mediates Binding of the Protein-tyrosine Phosphatase SHP-1 to the Epidermal Growth Factor Receptor and Attenuation of Receptor Signaling

Heike Keilhack; Tencho Tenev; Elke Nyakatura; Jasminka Godovac-Zimmermann; Lene Nielsen; Klaus Seedorf; Frank-D. Böhmer

The protein-tyrosine phosphatase SHP-1 binds to and dephosphorylates the epidermal growth factor receptor (EGFR), and both SH2 domains of SHP-1 are important for this interaction (Tenev, T., Keilhack, H., Tomic, S., Stoyanov, B., Stein-Gerlach, M., Lammers, R., Krivtsov, A. V., Ullrich, A., and Böhmer, F. D. (1997) J. Biol. Chem. 272, 5966–5973). We mapped the EGFR phosphotyrosine 1173 as the major binding site for SHP-1 by a combination of phosphopeptide activation, phosphopeptide competition, and receptor YF mutant analysis. Mutational conversion of the EGFR sequence 1171–1176 AEYLRV into the high affinity SHP-1 binding sequence LEYLYL of the erythropoietin receptor (EpoR) led to a highly elevated SHP-1 binding to the mutant EGFR (EGFR1171–1176EpoR) and in turn to an enhanced dephosphorylation of the receptor. SHP-1 expression interfered with EGF-dependent mitogen-activated protein kinase stimulation, and this effect was more pronounced in case of EGFR1171–1176EpoR. Reduced SHP-1 binding to the EGFR Y1173F mutant resulted in a reduced receptor dephosphorylation by coexpressed SHP-1 and less interference with EGF-dependent mitogen-activated protein kinase stimulation. The effects of receptor mutations on SHP-1 binding were, however, stronger than those on receptor dephosphorylation by SHP-1. Therefore, receptor dephosphorylation may be the result of the combined activity of receptor-bound SHP-1 and SHP-1 bound to an auxiliary docking protein.


Leukemia | 2001

Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor.

Tse Kf; Novelli E; Curt I. Civin; Frank-D. Böhmer; Donald Small

FLT3 is a member of the type III receptor tyrosine kinase (RTK) family. These receptors all contain an intrinsic tyrosine kinase domain that is critical to signaling. Aberrant expression of the FLT3 gene has been documented in both adult and childhood leukemias including AML, ALL and CML. In addition, 17–27% of pediatric and adult patients with AML have small internal tandem duplication mutations in FLT3. Patients expressing the mutant form of the receptor have been shown to have a decreased chance for cure. Our previous study, using a constitutively activated FLT3, demonstrated transformation of Ba/F3 cells and leukemic development in an animal model. Thus, there is accumulating evidence for a role for FLT3 in human leukemias. This has prompted us to search for inhibitors of FLT3 as a possible therapeutic approach in these patients. AG1296 is a compound of the tyrphostin class that is known to selectively inhibit the tyrosine kinase activity of the PDGF and KIT receptors. Since FLT3 is a close relative of KIT, we wanted to test the possible inhibitory activity of AG1296 on FLT3. In transfected Ba/F3 cells, AG1296 selectively and potently inhibited autophosphorylation of FL-stimulated wild-type and constitutively activated FLT3. Treatment by AG1296 abolished IL-3-independent proliferation of Ba/F3 cells expressing the constitutively activated FLT3 and thus, reversed the transformation mediated by activated FLT3. Inhibition of FLT3 activity by AG1296 in cells transformed by activated FLT3 resulted in apoptotic cell death, with no deleterious effect on their parental counterparts. Addition of IL-3 rescued the growth of cells expressing activated FLT3 in the presence of AG1296. This demonstrates that the inhibition is specific to the FLT3 pathway in that it leaves the kinases of the IL-3 pathway and other kinases further downstream involved in proliferation intact. Several proteins phosphorylated by the activated FLT3 signaling pathway, including STAT 5A, STAT 5B and CBL, were no longer phosphorylated when these cells were treated with AG1296. The activity against FLT3 suggests a potential therapeutic application for AG1296 or similar drugs in the treatment of leukemias involving deregulated FLT3 tyrosine kinase activity and as a tool for studying the biology of FLT3.


FEBS Journal | 2008

Protein tyrosine phosphatases: regulatory mechanisms

Jeroen den Hertog; Arne Östman; Frank-D. Böhmer

Protein‐tyrosine phosphatases are tightly controlled by various mechanisms, ranging from differential expression in specific cell types to restricted subcellular localization, limited proteolysis, post‐translational modifications affecting intrinsic catalytic activity, ligand binding and dimerization. Here, we review the regulatory mechanisms found to control the classical protein‐tyrosine phosphatases.


Circulation Research | 1999

A Dual Inhibitor of Platelet-Derived Growth Factor β-Receptor and Src Kinase Activity Potently Interferes With Motogenic and Mitogenic Responses to PDGF in Vascular Smooth Muscle Cells A Novel Candidate for Prevention of Vascular Remodeling

Johannes Waltenberger; Andrea Uecker; Jens Kroll; Hedwig Frank; Ulrike Mayr; Jeffrey D. Bjorge; Donald J. Fujita; Aviv Gazit; Vinzenz Hombach; Alexander Levitzki; Frank-D. Böhmer

PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed, and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs, as determined in the modified Boyden chamber, as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly, in addition to inhibition of Src kinase, PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells, including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR, PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases, the activities of the epidermal growth factor receptor, fibroblast growth factor receptor-1, and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872, whereas PDGF alpha-receptor was susceptible, albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events, creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity, such as vascular remodeling and restenosis.

Collaboration


Dive into the Frank-D. Böhmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hartwig Kosmehl

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge