Sylvia-Annette Böhmer
University of Jena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sylvia-Annette Böhmer.
Blood | 2009
Dirk Schmidt-Arras; Sylvia-Annette Böhmer; Sina Koch; Jörg P. Müller; Lutz Blei; Hauke Cornils; Reinhard Bauer; Sridhar Korasikha; Christian Thiede; Frank-D. Böhmer
The mechanism of cell transformation by Fms-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia (AML) is incompletely understood. The most prevalent activated mutant FLT3 ITD exhibits an altered signaling quality, including strong activation of the STAT5 transcription factor. FLT3 ITD has also been found partially retained as a high-mannose precursor in an intracellular compartment. To analyze the role of intracellular retention of FLT3 for transformation, we have generated FLT3 versions that are anchored in the perinuclear endoplasmic reticulum (ER) by appending an ER retention sequence containing a RRR (R3) motif. ER retention of R3, but not of corresponding A3 FLT3 versions, is shown by biochemical, fluorescence-activated cell sorting, and immunocytochemical analyses. ER anchoring reduced global autophosphorylation and diminished constitutive activation of ERK1/2 and AKT of the constitutively active FLT3 versions. ER anchoring was, however, associated with elevated signaling to STAT3. Transforming activity of the FLT3 D835Y mutant was suppressed by ER anchoring. In contrast, ER-anchored FLT3 ITD retained STAT5-activating capacity and was transforming in vitro and in vivo. The findings highlight another aspect of the different signaling quality of FLT3 ITD: It can transform cells from an intracellular location.
Journal of Biological Chemistry | 2011
Deepika Arora; Sabine Stopp; Sylvia-Annette Böhmer; Julia Schons; Rinesh Godfrey; Kristina Masson; Elena Razumovskaya; Lars Rönnstrand; Simone Tänzer; Reinhard Bauer; Frank-D. Böhmer; Jörg P. Müller
Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by “substrate trapping” experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.
Blood | 2012
Rinesh Godfrey; Deepika Arora; Reinhard Bauer; Sabine Stopp; Jörg P. Müller; Theresa Heinrich; Sylvia-Annette Böhmer; Markus Dagnell; Ulf Schnetzke; Sebastian Scholl; Arne Östman; Frank-D. Böhmer
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.
Leukemia | 2002
Teller S; Krämer D; Sylvia-Annette Böhmer; Tse Kf; Donald Small; Mahboobi S; Wallrapp C; Beckers T; Kratz-Albers K; Schwäble J; Serve H; Frank-D. Böhmer
Aberrant expression and activating mutations of the class III receptor tyrosine kinase Flt3 (Flk-2, STK-1) have been linked to poor prognosis in acute myeloid leukemia (AML). Inhibitors of Flt3 tyrosine kinase activity are, therefore, of interest as potential therapeutic compounds. We previously described bis(1H-2-indolyl)-1-methanones as a novel class of selective inhibitors for platelet-derived growth factor receptors (PDGFR). Several bis(1H-2-indolyl)-1-methanone derivatives, represented by the compounds D-64406 and D-65476, are also potent inhibitors of Flt3. They inhibit proliferation of TEL-Flt3-transfected BA/F3 cells with IC50 values of 0.2–0.3 μM in the absence of IL-3 but >10 μM in the presence of IL-3. Ligand-stimulated autophosphorylation of Flt3 in EOL-1 cells and corresponding downstream activation of Akt/PKB are effectively inhibited by bis(1H-2-indolyl)-1-methanones whereas autophosphorylation of c-Kit/SCF receptor or c-Fms/CSF-1 receptor is less sensitive or insensitive, respectively. Flt3 kinase purified by different methods is potently inhibited in vitro, demonstrating a direct mechanism of inhibition. 32D cells, expressing a constitutively active Flt3 variant with internal tandem duplication are greatly sensitized to radiation-induced apoptosis in the presence of D-64406 or D-65476 in the absence but not in the presence of IL-3. Thus, bis(1H-2-indolyl)-1-methanones are potential candidates for the treatment of Flt3-driven leukemias.
Leukemia | 2016
A. K. Jayavelu; Jürgen Müller; R. Bauer; Sylvia-Annette Böhmer; J. Lässig; Sabine Cerny-Reiterer; Wolfgang R. Sperr; Peter Valent; Barbara Maurer; Richard Moriggl; Katrin Schröder; Ajay M. Shah; M. Fischer; Sebastian Scholl; J. Barth; T. Oellerich; T. Berg; H. Serve; Stephanie Frey; Thomas Fischer; Florian H. Heidel; Frank Dietmar Böhmer
Activating mutations of FMS-like tyrosine kinase 3 (FLT3), notably internal tandem duplications (ITDs), are associated with a grave prognosis in acute myeloid leukemia (AML). Transforming FLT3ITD signal transduction causes formation of reactive oxygen species (ROS) and inactivation of the protein-tyrosine phosphatase (PTP) DEP-1/PTPRJ, a negative regulator of FLT3 signaling. Here we addressed the underlying mechanisms and biological consequences. NADPH oxidase 4 (NOX4) messenger RNA and protein expression was found to be elevated in FLT3ITD-positive cells and to depend on FLT3ITD signaling and STAT5-mediated activation of the NOX4 promoter. NOX4 knockdown reduced ROS levels, restored DEP-1 PTP activity and attenuated FLT3ITD-driven transformation. Moreover, Nox4 knockout (Nox4−/−) murine hematopoietic progenitor cells were refractory to FLT3ITD-mediated transformation in vitro. Development of a myeloproliferative-like disease (MPD) caused by FLT3ITD-transformed 32D cells in C3H/HeJ mice, and of a leukemia-like disease in mice transplanted with MLL-AF9/ FLT3ITD-transformed murine hematopoietic stem cells were strongly attenuated by NOX4 downregulation. NOX4-targeting compounds were found to counteract proliferation of FLT3ITD-positive AML blasts and MPD development in mice. These findings reveal a previously unrecognized mechanism of oncoprotein-driven PTP oxidation, and suggest that interference with FLT3ITD-STAT5-NOX4-mediated overproduction of ROS and PTP inactivation may have therapeutic potential in a subset of AML.
Nucleic Acids Research | 2008
Luchezar Karagyozov; Rinesh Godfrey; Sylvia-Annette Böhmer; Astrid Petermann; Sebastian Hölters; Arne Östman; Frank-D. Böhmer
Analysis of the human protein-tyrosine phosphatase (PTP) PTPRJ mRNA detected three in-frame AUGs at the 5′-end (starting at nt +14, +191 and +356) with no intervening stop codons. This tandem AUG arrangement is conserved between humans and the mouse and is unique among the genes of the classical PTPs. Until now it was assumed that the principal open reading frame (ORF) starts at AUG356. Our experiments showed that: (i) translation of the mRNA synthesized under the PTPRJ promoter starts predominantly at AUG191, leading to the generation of a 55 amino acid sequence preceding the signal peptide; (ii) the longer form is being likewise correctly processed into mature PTPRJ; (iii) the translation of the region between AUG191 and AUG356 inhibits the overall expression, a feature which depends on the sequence of the encoded peptide. Specifically, a sequence of 13 amino acids containing multiple arginine residues (RRTGWRRRRRRRR) confers the inhibition. In the absence of uORF these previously unrecognized characteristics of the 5′-end of the mRNA present a novel mechanism to suppress, and potentially to regulate translation.
Cell Communication and Signaling | 2012
Deepika Arora; Susanne Köthe; Monique van den Eijnden; Rob Hooft van Huijsduijnen; Florian H. Heidel; Thomas Fischer; Sebastian Scholl; Benjamin Tölle; Sylvia-Annette Böhmer; Johan Lennartsson; Fabienne Isken; Carsten Müller-Tidow; Frank-D. Böhmer
Protein-tyrosine phosphatases (PTPs) are important regulators of cellular signaling and changes in PTP activity can contribute to cell transformation. Little is known about the role of PTPs in Acute Myeloid Leukemia (AML). The aim of this study was therefore to establish a PTP expression profile in AML cells and to explore the possible role of FLT3 ITD (Fms-like tyrosine kinase 3 with internal tandem duplication), an important oncoprotein in AML for PTP gene expression. PTP mRNA expression was analyzed in AML cells from patients and in cell lines using a RT-qPCR platform for detection of transcripts of 92 PTP genes. PTP mRNA expression was also analyzed based on a public microarray data set for AML patients. Highly expressed PTPs in AML belong to all PTP subfamilies. Very abundantly expressed PTP genes include PTPRC, PTPN2, PTPN6, PTPN22, DUSP1, DUSP6, DUSP10, PTP4A1, PTP4A2, PTEN, and ACP1. PTP expression was further correlated with the presence of FLT3 ITD, focusing on a set of highly expressed dual-specificity phosphatases (DUSPs). Elevated expression of DUSP6 in patients harboring FLT3 ITD was detected in this analysis. The mechanism and functional role of FLT3 ITD-mediated upregulation of DUSP6 was then explored using pharmacological inhibitors of FLT3 ITD signal transduction and si/shRNA technology in human and murine cell lines. High DUSP6 expression was causally associated with the presence of FLT3 ITD and dependent on FLT3 ITD kinase activity and ERK signaling. DUSP6 depletion moderately increased ERK1/2 activity but attenuated FLT3 ITD-dependent cell proliferation of 32D cells. In conclusion, DUSP6 may play a contributing role to FLT3 ITD-mediated cell transformation.
PLOS ONE | 2013
Sylvia-Annette Böhmer; Irene Weibrecht; Ola Söderberg; Frank-D. Böhmer
Protein-tyrosine phosphatases (PTPs) are important regulators of signal transduction processes. Essential for the functional characterization of PTPs is the identification of their physiological substrates, and an important step towards this goal is the demonstration of a physical interaction. The association of PTPs with their cellular substrates is, however, often transient and difficult to detect with unmodified proteins at endogenous levels. Density-enhanced phosphatase-1 (DEP-1/PTPRJ) is a regulator of hematopoietic cell functions, and a candidate tumor suppressor. However, association of DEP-1 with any of its proposed substrates at endogenous levels has not yet been shown. We have previously obtained functional and biochemical evidence for a direct interaction of DEP-1 with the hematopoietic receptor-tyrosine kinase Fms-like tyrosine kinase-3 (FLT3). In the current study we have used the method of in situ proximity ligation assay (in situ PLA) to validate this interaction at endogenous levels, and to further characterize it. In situ PLA readily detected association of endogenous DEP-1 and FLT3 in the human acute monocytic leukemia cell line THP-1, which was enhanced by FLT3 ligand (FL) stimulation in a time-dependent manner. Association peaked between 10 and 20 min of stimulation and returned to basal levels at 30 min. This time course was similar to the time course of FLT3 autophosphorylation. FLT3 kinase inhibition and DEP-1 oxidation abrogated association. Consistent with a functional role of DEP-1-FLT3 interaction, stable knockdown of DEP-1 in THP-1 cells enhanced FL-induced ERK1/2 activation. These findings support that FLT3 is a bona fide substrate of DEP-1 and that interaction occurs mainly via an enzyme-substrate complex formation triggered by FLT3 ligand stimulation.
Journal of Cell Science | 2013
Susanne Köthe; Jörg P. Müller; Sylvia-Annette Böhmer; Todor Tschongov; Melanie Fricke; Sina Koch; Christian Thiede; Robert P. Requardt; Ignacio Rubio; Frank-D. Böhmer
Summary FMS-like tyrosine kinase 3 with internal tandem duplication (FLT3 ITD) is an important oncoprotein in acute myeloid leukemia (AML). Owing to its constitutive kinase activity FLT3 ITD partially accumulates at endomembranes, a feature shared with other disease-associated, mutated receptor tyrosine kinases. Because Ras proteins also transit through endomembranes we have investigated the possible existence of an intracellular FLT3-ITD/Ras signaling pathway by comparing Ras signaling of FLT3 ITD with that of wild-type FLT3. Ligand stimulation activated both K- and N-Ras in cells expressing wild-type FLT3. Live-cell Ras–GTP imaging revealed ligand-induced Ras activation at the plasma membrane (PM). FLT3-ITD-dependent constitutive activation of K-Ras and N-Ras was also observed primarily at the PM, supporting the view that the PM-resident pool of FLT3 ITD engaged the Ras/Erk pathway in AML cells. Accordingly, specific interference with FLT3-ITD/Ras signaling at the PM using PM-restricted dominant negative K-RasS17N potently inhibited cell proliferation and promoted apoptosis. In conclusion, Ras signaling is crucial for FLT3-ITD-dependent cell transformation and FLT3 ITD addresses PM-bound Ras despite its pronounced mislocalization to endomembranes.
Methods of Molecular Biology | 2016
Sina Koch; Irene Helbing; Sylvia-Annette Böhmer; Makoto Hayashi; Lena Claesson-Welsh; Ola Söderberg; Frank-D. Böhmer
Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.