Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Follmann is active.

Publication


Featured researches published by Frank Follmann.


PLOS ONE | 2008

Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

Else Marie Agger; Ida Rosenkrands; Jon Hansen; Karima Brahimi; Brian S. Vandahl; Claus Aagaard; Kerstin Werninghaus; Carsten J. Kirschning; Roland Lang; Dennis Christensen; Michael Theisen; Frank Follmann; Peter Andersen

Background It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. Methods and Findings Herein, we describe a cationic adjuvant formulation (CAF01) consisting of DDA as a delivery vehicle and synthetic mycobacterial cordfactor as immunomodulator. CAF01 primes strong and complex immune responses and using ovalbumin as a model vaccine antigen in mice, antigen specific cell-mediated- and humoral responses were obtained at a level clearly above a range of currently used adjuvants (Aluminium, monophosphoryl lipid A, CFA/IFA, Montanide). This response occurs through Toll-like receptor 2, 3, 4 and 7-independent pathways whereas the response is partly reduced in MyD88-deficient mice. In three animal models of diseases with markedly different immunological requirement; Mycobacterium tuberculosis (cell-mediated), Chlamydia trachomatis (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge. Conclusion CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection.


Infection and Immunity | 2003

PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family.

Limei Meng Okkels; Inger Brock; Frank Follmann; Else Marie Agger; Sandra M. Arend; Tom H. M. Ottenhoff; Fredrik Oftung; Ida Rosenkrands; Peter Andersen

ABSTRACT Proteins encoded by DNA segment RD1 of Mycobacterium tuberculosis have recently been demonstrated to play important roles in bacterial virulence, vaccine development, and diagnostic reagent design. Previously, we characterized two immunodominant T-cell antigens, the early secreted antigen target (ESAT-6) and the 10-kDa culture filtrate protein (CFP10), which are encoded by the esx-lhp operon in this region. In the present study we characterized a third putative open reading frame in this region, rv3873, which encodes a PPE protein. We found that the rv3873 gene is expressed in M. tuberculosis H37Rv and that the native protein, Rv3873, is predominantly associated with the mycobacterial cell or wall. When tested as a His-tagged recombinant protein, Rv3873 stimulated high levels of gamma interferon secretion in peripheral blood mononuclear cells isolated from tuberculosis (TB) patients, as well as from healthy tuberculin purified protein derivative-positive donors. In contrast to other RD1-encoded antigens, Rv3873 was also found to be recognized by a significant proportion of Mycobacterium bovis BCG-vaccinated donors. Epitope mapping performed with overlapping peptides revealed a broad pattern of T-cell recognition comprising both TB-specific epitopes and epitopes also recognized by BCG-vaccinated donors. The immunodominant epitope (residues 118 to 135) for both TB patients and BCG-vaccinated individuals was found to be highly conserved among a large number of PPE family members.


The Journal of Infectious Diseases | 2008

Liposome Delivery of Chlamydia muridarum Major Outer Membrane Protein Primes a Th1 Response That Protects against Genital Chlamydial Infection in a Mouse Model

Jon Hansen; Klaus T. Jensen; Frank Follmann; Else Marie Agger; Michael Theisen; Peter Andersen

BACKGROUND Immunity to chlamydia is thought to rely on interferon (IFN)-gamma-secreting T helper cells type 1 (Th1) with an additional effect of secreted antibodies. A need for Th1-polarizing adjuvants in experimental chlamydia vaccines has been demonstrated, and antigen conformation has also been reported as being important for raising protective immunity. METHODS C57BL/6 mice vaccinated with native refolded Chlamydia muridarum major outer membrane protein (MOMP) adjuvanted with either Th1-promoting cationic adjuvant formulation 1 (CAF01) or T helper cells type 2-promoting aluminum hydroxide (alum) received a genital inoculation of 1.5 x 10(5) inclusion-forming units of C. muridarum. The role played by CD4(+) T cells in MOMP/CAF01-raised immunity was investigated by depleting CD4(+) T cells in vaccinated mice, and antigen conformation dependence was evaluated by vaccination with recombinant MOMP. RESULTS Mice vaccinated with MOMP/alum displayed a strong anti-MOMP humoral response with high IgG1 titers, low levels of IFN-gamma and tumor necrosis factor (TNF)-alpha, and only a slight reduction in chlamydial load. Mice vaccinated with MOMP/CAF01 displayed high titers of IgG2b, IFN-gamma, and TNF-alpha and a profoundly reduced vaginal chlamydial load, compared with control mice. The protection was CD4(+) T cell dependent and was not dependent on MOMP conformation. CONCLUSION CAF01 adjuvant facilitates a protective anti-MOMP CD4(+) T cell response independent of MOMP conformation.


Scientific Reports | 2016

Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens.

Niels Peter Hell Knudsen; Anja Olsen; Cecilia Buonsanti; Frank Follmann; Yuan Zhang; Rhea N. Coler; Christopher B. Fox; Andreas Meinke; Ugo D’Oro; Daniele Casini; Alessandra Bonci; Rolf Billeskov; Ennio De Gregorio; Rino Rappuoli; Ali M. Harandi; Peter Andersen; Else Marie Agger

The majority of vaccine candidates in clinical development are highly purified proteins and peptides relying on adjuvants to enhance and/or direct immune responses. Despite the acknowledged need for novel adjuvants, there are still very few adjuvants in licensed human vaccines. A vast number of adjuvants have been tested pre-clinically using different experimental conditions, rendering it impossible to directly compare their activity. We performed a head-to-head comparison of five different adjuvants Alum, MF59®, GLA-SE, IC31® and CAF01 in mice and combined these with antigens from M. tuberculosis, influenza, and chlamydia to test immune-profiles and efficacy in infection models using standardized protocols. Regardless of antigen, each adjuvant had a unique immunological signature suggesting that the adjuvants have potential for different disease targets. Alum increased antibody titers; MF59® induced strong antibody and IL-5 responses; GLA-SE induced antibodies and Th1; CAF01 showed a mixed Th1/Th17 profile and IC31® induced strong Th1 responses. MF59® and GLA-SE were strong inducers of influenza HI titers while CAF01, GLA-SE and IC31® enhanced protection to TB and chlamydia. Importantly, this is the first extensive attempt to categorize clinical-grade adjuvants based on their immune profiles and protective efficacy to inform a rational development of next generation vaccines for human use.


The Journal of Infectious Diseases | 2015

Protection Against Chlamydia trachomatis Infection and Upper Genital Tract Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein.

Anja Weinreich Olsen; Frank Follmann; Karin Erneholm; Ida Rosenkrands; Peter Andersen

The VD4 region from the Chlamydia trachomatis major outer membrane protein contains important neutralizing B-cell epitopes of relevance for antibody-mediated protection against genital tract infection. We developed a multivalent vaccine construct based on VD4s and their surrounding constant segments from serovars D, E, and F. Adjuvanted with cationic liposomes, this construct promoted strong immune responses to serovar-specific epitopes, the conserved LNPTIAG epitope and neutralized serovars D, E, and F. Vaccinated mice were protected against challenge, with protection defined as reduced bacterial numbers in vagina and prevention of pathological changes in the upper genital tract. Adoptive transfer of serum and T-cell depletion experiments demonstrated a dominant role for antibodies and CD4(+) T cells in the protective immune response. Integrating a multivalent VD4 construct into the sequence of the major outer membrane protein resulted in a protective and broadly neutralizing vaccine. Our findings emphasize the important role of antibodies in protection against Chlamydia trachomatis.


PLOS ONE | 2010

Protection against Chlamydia Promoted by a Subunit Vaccine (CTH1) Compared with a Primary Intranasal Infection in a Mouse Genital Challenge Model

Anja Weinreich Olsen; Michael Theisen; Dennis Christensen; Frank Follmann; Peter Andersen

Background The chlamydial proteins CT443 (OmcB) and CT521 (rl16) have previously been identified as human B and/or T cell targets during a chlamydial infection in humans. Here we compare the protective effector mechanism promoted by a fusion protein composed of CT521 and CT443 (CTH1) with a primary intranasal Chlamydia muridarum infection known to provide high levels of protection against a genital chlamydial challenge. Methodology/Principal Findings The fusion protein CTH1, adjuvanted with a strong Th1 inducing cationic adjuvant (CAF01), significantly reduced the bacterial shedding compared to a control group in both a C. trachomatis Serovar D and C. muridarum challenge model. The CTH1/CAF01 vaccine was found to induce polyfunctional T cells consisting of TNFα/IL-2 and TNFα/IL-2/IFN-γ positive cells and high titers of CTH1 specific IgG2a and IgG1. By depletion experiments the protection in the C. muridarum challenge model was demonstrated to be mediated solely by CD4+ T cells. In comparison, an intranasal infection with C. muridarum induced a T cell response that consisted predominantly of TNFα/IFN-γ co-expressing effector CD4+ T cells and an antibody response consisting of C. muridarum specific IgG1, IgG2a but also IgA. This response was associated with a high level of protection against challenge—a protection that was only partially dependent on CD4+ T cells. Furthermore, whereas the antibody response induced by intranasal infection was strongly reactive against the native antigens displayed in the chlamydial elementary body, only low levels of antibodies against this preparation were found after CTH1/CAF01 immunization. Conclusions/Significance Our data demonstrate that CTH1 vaccination promotes a CD4+ T cell dependent protective response but compared with intranasal C. muridarum infection lacks a CD4 independent protective mechanism for complete protection.


The Journal of Infectious Diseases | 2008

Antigenic Profiling of a Chlamydia trachomatis Gene-Expression Library

Frank Follmann; Anja Weinreich Olsen; Klaus T. Jensen; Paul R. Hansen; Peter Andersen; Michael Theisen

The obligate intracellular bacterium Chlamydia trachomatis is the causative agent of sexually transmitted chlamydia infections. A panel of 116 recombinant C. trachomatis proteins was evaluated comparatively to characterize both cell-mediated and humoral immune responses in patients with confirmed C. trachomatis genital infection. The antigens identified were categorized as being recognized exclusively by T cells (CT004, CT043, CT184, CT509, and CT611), B cells (CT082, CT089, CT322, CT396, and CT681), or both T cells and B cells (CT110 and CT443). This grouping of C. trachomatis antigens was correlated to their predicted cellular localization. The comparative evaluation presented here indicates that T cell antigens are located in all bacterial compartments, whereas antibody targets are mainly localized to the outer membrane (P = .0013). Overall, we have identified 5 T cell antigens, 5 B cell antigens, and 2 T/B cell antigens that are potential components for a future chlamydia vaccine.


Journal of Immunology | 2009

Novel Generation Mycobacterial Adjuvant Based on Liposome-Encapsulated Monomycoloyl Glycerol from Mycobacterium bovis Bacillus Calmette-Guérin

Claire Swetman Andersen; Ida Rosenkrands; Anja Olsen; Pernille Nordly; Dennis Christensen; Roland Lang; Carsten J. Kirschning; Jessica M. Gomes; Veemal Bhowruth; David E. Minnikin; Gurdyal S. Besra; Frank Follmann; Peter Andersen; Else Marie Agger

The immunostimulatory activity of lipids associated with the mycobacterial cell wall has been recognized for several decades and exploited in a large variety of different adjuvant preparations. Previously, we have shown that a mycobacterial lipid extract from Mycobacterium bovis bacillus Calmette-Guérin delivered in cationic liposomes was a particular efficient Th1-inducing adjuvant formulation effective against tuberculosis. Herein, we have dissected the adjuvant activity of the bacillus Calmette-Guérin lipid extract showing that the majority of the activity was attributable to the apolar lipids and more specifically to a single lipid, monomycoloyl glycerol (MMG), previously also shown to stimulate human dendritic cells. Delivered in cationic liposomes, MMG induced the most prominent Th1-biased immune response that provided significant protection against tuberculosis. Importantly, a simple synthetic analog of MMG, based on a 32 carbon mycolic acid, was found to give rise to comparable high Th1-biased responses with a major representation of polyfunctional CD4 T cells coexpressing IFN-γ, TNF-α, and IL-2. Furthermore, comparable activity was shown by an even simpler monoacyl glycerol analog, based on octadecanoic acid. The use of these synthetic analogs of MMG represents a promising new strategy for exploiting the immunostimulatory activity and adjuvant potential of components from the mycobacterial cell wall without the associated toxicity issues observed with complex mycobacterial preparations.


Applied and Environmental Microbiology | 2014

Decoration of Outer Membrane Vesicles with Multiple Antigens by Using an Autotransporter Approach

Maria H. Daleke-Schermerhorn; Tristan Felix; Zora Soprova; Corinne M. ten Hagen-Jongman; David Vikström; Laleh Majlessi; Joep Beskers; Frank Follmann; Karin de Punder; Nicole N. van der Wel; Thomas Baumgarten; Thang V. Pham; Sander R. Piersma; Connie R. Jimenez; Peter van Ulsen; Jan-Willem de Gier; Claude Leclerc; Wouter S. P. Jong; Joen Luirink

ABSTRACT Outer membrane vesicles (OMVs) are spherical nanoparticles that naturally shed from Gram-negative bacteria. They are rich in immunostimulatory proteins and lipopolysaccharide but do not replicate, which increases their safety profile and renders them attractive vaccine vectors. By packaging foreign polypeptides in OMVs, specific immune responses can be raised toward heterologous antigens in the context of an intrinsic adjuvant. Antigens exposed at the vesicle surface have been suggested to elicit protection superior to that from antigens concealed inside OMVs, but hitherto robust methods for targeting heterologous proteins to the OMV surface have been lacking. We have exploited our previously developed hemoglobin protease (Hbp) autotransporter platform for display of heterologous polypeptides at the OMV surface. One, two, or three of the Mycobacterium tuberculosis antigens ESAT6, Ag85B, and Rv2660c were targeted to the surface of Escherichia coli OMVs upon fusion to Hbp. Furthermore, a hypervesiculating ΔtolR ΔtolA derivative of attenuated Salmonella enterica serovar Typhimurium SL3261 was generated, enabling efficient release and purification of OMVs decorated with multiple heterologous antigens, exemplified by the M. tuberculosis antigens and epitopes from Chlamydia trachomatis major outer membrane protein (MOMP). Also, we showed that delivery of Salmonella OMVs displaying Ag85B to antigen-presenting cells in vitro results in processing and presentation of an epitope that is functionally recognized by Ag85B-specific T cell hybridomas. In conclusion, the Hbp platform mediates efficient display of (multiple) heterologous antigens, individually or combined within one molecule, at the surface of OMVs. Detection of antigen-specific immune responses upon vesicle-mediated delivery demonstrated the potential of our system for vaccine development.


The Journal of Infectious Diseases | 2007

Identification of Human T Cell Targets Recognized during Chlamydia trachomatis Genital Infection

Anja Olsen; Frank Follmann; Peter Højrup; Robert Leah; Carsten Sand; Peter Andersen; Michael Theisen

The specificity of the human T cell response to Chlamydia trachomatis was investigated by stimulating lymphocytes from 16 case patients with urogenital infection by use of a size-fractionated serovar D lysate. Considerable heterogeneity was found among case patients, and multiple protein fractions were recognized in each specimen. Mass spectrometry analysis of the 30-42-kDa T cell-stimulating region identified 10 C. trachomatis proteins. Of these, CT583, CT603, and CT610 were identified as strong antigens that induced significantly higher levels of IFN- gamma secretion in PBMCs from case patients, compared with PBMCs from control donors. All 3 proteins were recognized in specimens from case patients infected with serovars D-F, the most prevalent serovars. McDonald-Kreitman and Tajimas D tests involving clinical isolates from the same samples showed evidence for frequency-dependent selection on ct583. We predict that CT583 is a target of acquired protective immune responses in humans.

Collaboration


Dive into the Frank Follmann's collaboration.

Top Co-Authors

Avatar

Peter Andersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Andersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emma Lorenzen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Robert Leah

Statens Serum Institut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karin Erneholm

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge