Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank M. Longo is active.

Publication


Featured researches published by Frank M. Longo.


Experimental Neurology | 1982

Nerve regeneration in silicone chambers: Influence of gap length and of distal stump components

Göran Lundborg; Lars B. Dahlin; Nils Danielsen; Richard H. Gelberman; Frank M. Longo; Henry C. Powell; Silvio Varon

Abstract The range of growth-promoting influences from a distal nerve stump on a regenerating proximal stump was determined using an experimental system in which a gap between cross-anastomosed rat sciatic nerves was encased by a cylindrical silicone chamber. Two arrangements were examined after 1 month in situ: A proximal-distal (PD) system in which both proximal and distal stumps were introduced into the ends of the chamber, and a proximal-open (PO) system in which the distal stump was omitted. When the gap was 6 mm long, a regenerated nerve extended all the way through the chamber in both the PD and PO systems. When the gap was increased to 10 mm, a similar regrowth occurred in the PD chamber, whereas in the PO chamber proximal regrowth was partial or nonexistent. When the gap was increased to 15 mm, no regeneration occurred, even in the presence of the distal stump. These observations confirm that the distal stump influences proximal regeneration and indicate that this influence can act only over a limited distance or volume. Such an influence could consist of humoral agents which support nerve growth and/or outgrowth from the distal stump.


Neuron | 2002

ProNGF Induces p75-Mediated Death of Oligodendrocytes following Spinal Cord Injury

Michael S. Beattie; Anthony W. Harrington; Ramee Lee; Ju Young Kim; Sheri L Boyce; Frank M. Longo; Jacqueline C. Bresnahan; Barbara L. Hempstead; Sung Ok Yoon

The neurotrophin receptor p75 is induced by various injuries to the nervous system, but its role after injury has remained unclear. Here, we report that p75 is required for the death of oligodendrocytes following spinal cord injury, and its action is mediated mainly by proNGF. Oligodendrocytes undergoing apoptosis expressed p75, and the absence of p75 resulted in a decrease in the number of apoptotic oligodendrocytes and increased survival of oligodendrocytes. ProNGF is likely responsible for activating p75 in vivo, since the proNGF from the injured spinal cord induced apoptosis among p75(+/+), but not among p75(-/-), oligodendrocytes in culture, and its action was blocked by proNGF-specific antibody. Together, these data suggest that the role of proNGF is to eliminate damaged cells by activating the apoptotic machinery of p75 after injury.


Nature Medicine | 2014

Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice

Saul A. Villeda; Kristopher E Plambeck; Jinte Middeldorp; Joseph M. Castellano; Kira I. Mosher; Jian Luo; Lucas K. Smith; Gregor Bieri; Karin Lin; Daniela Berdnik; Rafael Wabl; Joe Udeochu; Elizabeth G. Wheatley; Bende Zou; Danielle A. Simmons; Xinmin S. Xie; Frank M. Longo; Tony Wyss-Coray

As human lifespan increases, a greater fraction of the population is suffering from age-related cognitive impairments, making it important to elucidate a means to combat the effects of aging. Here we report that exposure of an aged animal to young blood can counteract and reverse pre-existing effects of brain aging at the molecular, structural, functional and cognitive level. Genome-wide microarray analysis of heterochronic parabionts—in which circulatory systems of young and aged animals are connected—identified synaptic plasticity–related transcriptional changes in the hippocampus of aged mice. Dendritic spine density of mature neurons increased and synaptic plasticity improved in the hippocampus of aged heterochronic parabionts. At the cognitive level, systemic administration of young blood plasma into aged mice improved age-related cognitive impairments in both contextual fear conditioning and spatial learning and memory. Structural and cognitive enhancements elicited by exposure to young blood are mediated, in part, by activation of the cyclic AMP response element binding protein (Creb) in the aged hippocampus. Our data indicate that exposure of aged mice to young blood late in life is capable of rejuvenating synaptic plasticity and improving cognitive function.


Journal of Clinical Investigation | 2010

Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents

Stephen M. Massa; Tao Yang; Youmei Xie; Jian Shi; Mehmet Bilgen; Jeffrey N. Joyce; Dean Nehama; Jayakumar Rajadas; Frank M. Longo

Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop-domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.


Brain Research | 1982

Nerve regeneration model and trophic factors in vivo

Göran Lundborg; Frank M. Longo; Silvio Varon

The proximal stump of a transected rat sciatic nerve has been observed to regenerate through a cylindrical silicone chamber across a 10 mm gap to the distal stump. The fluid filling such in vivo chambers contains trophic factors that ensure in vitro survival and growth of at least sensory neurons from rodent dorsal root ganglia--as already demonstrated for fluid generated in vitro from Schwann and other cell cultures.


Brain Research | 1984

Neurite-promoting factors and extracellular matrix components accumulating in vivo within nerve regeneration chambers

Frank M. Longo; Edward G. Hayman; George E. Davis; Erkki Ruoslahti; Eva Engvall; Marston Manthorpe; Silvio Varon

The outgrowth of neurites from cultured neurons can be induced by the extracellular matrix glycoproteins, fibronectin and laminin, and by polyornithine-binding neurite-promoting factors (NPFs) derived from culture media conditioned by Schwann, or other cultured cells. We have examined the occurrence of fibronectin, laminin and NPFs during peripheral nerve regeneration in vivo. A previously established model of peripheral nerve regeneration was used in which a transected rat sciatic nerve regenerates through a silicone chamber bridging a 10 mm interstump gap. The distribution of fibronectin and laminin during regeneration was assessed by indirect immunofluorescence. Seven days after nerve transection the regenerating structure within the chamber consisted primarily of a fibrous matrix which stained with anti-fibronectin but not anti-laminin. At 14 days, cellular outgrowths from the proximal and distal stumps (along which neurites grow) had entered the fibronectin-containing matrix, consistent with a role of fibronectin in promoting cell migration. Within these outgrowths non-vascular as well as vascular cells stained with anti-fibronectin and anti-laminin. Within the degenerated distal nerve segment, cell characteristic of Bungner bands (rows of Schwann cells along which regenerating neurites extend) stained with anti-fibronectin and laminin. The fluid surrounding the regenerating nerve was found to contain NPF activity for cultured ciliary ganglia neurons which markedly increased during the period of neurite growth into the chamber. In previous studies using this particular neurite-promoting assay, laminin but to a much lesser extent fibronectin also promoted neurite outgrowth.(ABSTRACT TRUNCATED AT 250 WORDS)


Brain Research | 1983

Neuronotrophic activities accumulate in vivo within silicone nerve regeneration chambers

Frank M. Longo; Marston Manthorpe; Stephen D. Skaper; Go¨ran Lundborg; Silvio Varon

Abstract Rat sciatic nerves can be transected and their proximal and distal stumps sutured into the openings of cylindrical silicone chambers. Anatomical regeneration has been demonstrated across 10 mm long chambers containing both stumps, although little or no axonal outgrowth occurs in chambers omitting the distal stump or exceeding the 10 mm length. We have previously shown that chambers containing both proximal and distal stumps accumulate within days of implantation a clear fluid containing neuronotrophic factors (NTFs) directed to neurons from neonatal mouse dorsal root ganglia. We report here that these chamber fluids also have considerable neuronotrophic activity for chick embryo neurons from embryologic day 4 (E4) lumbar spinal cord, E12 sympathetic ganglia, E12 (but not E8) dorsal root ganglia and E8 ciliary ganglia. Thus, the neuronal types supported by trophic factors of these fluids include all those which contribute axons to the sciatic nerve, namely sensory, spinal motor, and sympathetic. In fluid collected 1 week after implantation, NTF levels directed to different neurons varied independently from one another in chambers with different nerve insertions, suggesting that these activities reside in separate factors. Fluid collected from chamber arrangements allowing little proximal fiber regrowth did not always contain correspondingly lower titers of NTFs. However, generally higher titers of all NTFs were found in chambers containing either or both nerve stumps that in nerve-free chambers. Fluids collected from nerve-containing chambers were subjected to heat, dialysis or trypsin treatments. The behavior of their neuronotrophic activities suggests their association with proteins.


Journal of Neuropathology and Experimental Neurology | 1982

In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap.

Göran Lundborg; Richard H. Gelberman; Frank M. Longo; Henry C. Powell; Silvio Varon

We describe an experimental in vivo system for studying peripheral nerve regeneration, in which the proximal stump of a transected nerve regrows through a transparent silicone chamber toward the distal stump. Physical separation permits examination of the effects of the humoral and/or cellular influences from the distal stump on regenerating fibers before they invade the distal segment itself. A small segment of the rat sciatic nerve was resected, leaving a 6 mm gap which was then encased by a cylindrical silicone chamber. Within the first weeks, a nerve trunk regenerated along the central axis of the chamber bridged the gap between the proximal and distal stumps. When the distal nerve stump was omitted from the distal opening of the chamber, only a thin structure with a few small-caliber fibers extended across the gap. In each instance regenerating nerve appeared as a cord-like structure completely surrounded by clear fluid, a feature which permits easy collection of the extracellular fluid for analysis of its chemical properties and biological activity. This feature also allows in vivo manipulation of the humoral environment in which nerve regeneration occurs.


The Journal of Neuroscience | 2011

Leukocyte Common Antigen-Related Phosphatase Is a Functional Receptor for Chondroitin Sulfate Proteoglycan Axon Growth Inhibitors

Daniel F. Fisher; Bin Xing; John Dill; Hui Li; Hai Hiep Hoang; Zhenze Zhao; Xiao Li Yang; Robert M. Bachoo; Stephen C. Cannon; Frank M. Longo; Morgan Sheng; Jerry Silver; Shuxin Li

Chondroitin sulfate proteoglycans (CSPGs) are a family of extracellular matrix molecules with various functions in regulating tissue morphogenesis, cell division, and axon guidance. A number of CSPGs are highly upregulated by reactive glial scar tissues after injuries and form a strong barrier for axonal regeneration in the adult vertebrate CNS. Although CSPGs may negatively regulate axonal growth via binding and altering activity of other growth-regulating factors, the molecular mechanisms by which CSPGs restrict axonal elongation are not well understood. Here, we identified a novel receptor mechanism whereby CSPGs inhibit axonal growth via interactions with neuronal transmembrane leukocyte common antigen-related phosphatase (LAR). CSPGs bind LAR with high affinity in transfected COS-7 cells and coimmunoprecipitate with LAR expressed in various tissues including the brain and spinal cord. CSPG stimulation enhances activity of LAR phosphatase in vitro. Deletion of LAR in knock-out mice or blockade of LAR with sequence-selective peptides significantly overcomes neurite growth restrictions of CSPGs in neuronal cultures. Intracellularly, CSPG–LAR interaction mediates axonal growth inhibition of neurons partially via inactivating Akt and activating RhoA signals. Systemic treatments with LAR-targeting peptides in mice with thoracic spinal cord transection injuries induce significant axon growth of descending serotonergic fibers in the vicinity of the lesion and beyond in the caudal spinal cord and promote locomotor functional recovery. Identification of LAR as a novel CSPG functional receptor provides a therapeutic basis for enhancing axonal regeneration and functional recovery after CNS injuries in adult mammals.


Brain Research | 1983

Neuronotrophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity.

M. Manthorpe; Manuel Nieto-Sampedro; Sd Skaper; Ellen R. Lewis; G. Barbin; Frank M. Longo; Carl W. Cotman; S. Varon

Neuronotrophic activity accumulates in a wound cavity created in the entorhinal/occipital cortex of developing rats. These trophic factors support the survival of neurons in monolayer cultures of chick embryo spinal cord, ciliary ganglion, sympathetic ganglion and dorsal root ganglion, as well as of mouse dorsal root ganglion. Trophic activity was very low both in non-injured brain tissue and in the wound cavity 1 day post-lesion, but it increased 15- to 300-fold during the subsequent 2-5 days. Together with the trophic activity in the wound fluid were other substances which interfered with the survival of spinal cord neurons. The neuronotrophic factors appeared to be proteins immunologically distinct from mouse submaxillary nerve growth factor. Fragments of rat embryo corpus striatum placed in the cortical wound cavity immediately after its formation showed very poor subsequent survival and no innervation of the host hippocampus. However, if implantation was delayed by 3 or 6 days with respect to the time at which the receiving cavity was made, the survival was greatly improved and innervation of the host took place. The time course for the accumulation of the trophic factors in the cavity paralleled the delay leading to increased survival of brain grafts. It is suggested that the neuronotrophic activity accumulating in the wound cavity during the delay period may be responsible for the increased survival of the implants.

Collaboration


Dive into the Frank M. Longo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youmei Xie

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Silvio Varon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy T. Yeo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie S. Zhang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge