Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia P. Belichenko is active.

Publication


Featured researches published by Nadia P. Belichenko.


The Journal of Comparative Neurology | 2009

Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks.

Pavel V. Belichenko; Elena Wright; Nadia P. Belichenko; Eliezer Masliah; Hong Hua Li; William C. Mobley; Uta Francke

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X‐linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (∼11%), CA1 (14–22%), and motor cortex (∼16%). A decreased spine head size (∼9%) and an increased spine neck length (∼12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14–26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT. J. Comp. Neurol. 514:240–258, 2009.


The Journal of Neuroscience | 2009

The “Down Syndrome Critical Region” Is Sufficient in the Mouse Model to Confer Behavioral, Neurophysiological, and Synaptic Phenotypes Characteristic of Down Syndrome

Nadia P. Belichenko; Pavel V. Belichenko; Alexander M. Kleschevnikov; Ahmad Salehi; Roger H. Reeves; William C. Mobley

Down syndrome (DS) can be modeled in mice segmentally trisomic for mouse chromosome 16. Ts65Dn and Ts1Cje mouse models have been used to study DS neurobiological phenotypes including changes in cognitive ability, induction of long-term potentiation (LTP) in the fascia dentata (FD), the density and size of dendritic spines, and the structure of synapses. To explore the genetic basis for these phenotypes, we examined Ts1Rhr mice that are trisomic for a small subset of the genes triplicated in Ts65Dn and Ts1Cje mice. The 33 trisomic genes in Ts1Rhr represent a “DS critical region” that was once predicted to be sufficient to produce most DS phenotypes. We discovered significant alterations in an open field test, a novel object recognition test and in a T-maze task. As in Ts65Dn and Ts1Cje mice, LTP in FD of Ts1Rhr could be induced only after blocking GABAA-dependent inhibitory neurotransmission. In addition, widespread enlargement of dendritic spines and decreased density of spines in FD were preserved in Ts1Rhr. Twenty of 48 phenotypes showed significant differences between Ts1Rhr and 2N controls. We conclude that important neurobiological phenotypes characteristic of DS are conserved in Ts1Rhr mice. The data support the view that biologically significant trisomic phenotypes occur because of dosage effects of genes in the Ts1Rhr trisomic segment and that increased dosage is sufficient to produce these changes. The stage is now set for studies to decipher the gene(s) that play a conspicuous role in creating these phenotypes.


The Journal of Neuroscience | 2013

A Small Molecule TrkB Ligand Reduces Motor Impairment and Neuropathology in R6/2 and BACHD Mouse Models of Huntington's Disease

Danielle A. Simmons; Nadia P. Belichenko; Tao Yang; Christina Condon; Marie Monbureau; Mehrdad Shamloo; Deqiang Jing; Stephen M. Massa; Frank M. Longo

Loss of neurotrophic support in the striatum caused by reduced brain-derived neurotrophic factor (BDNF) levels plays a critical role in Huntingtons disease (HD) pathogenesis. BDNF acts via TrkB and p75 neurotrophin receptors (NTR), and restoring its signaling is a prime target for HD therapeutics. Here we sought to determine whether a small molecule ligand, LM22A-4, specific for TrkB and without effects on p75NTR, could alleviate HD-related pathology in R6/2 and BACHD mouse models of HD. LM22A-4 was administered to R6/2 mice once daily (5–6 d/week) from 4 to 11 weeks of age via intraperitoneal and intranasal routes simultaneously to maximize brain levels. The ligand reached levels in the R6/2 forebrain greater than the maximal neuroprotective dose in vitro and corrected deficits in activation of striatal TrkB and its key signaling intermediates AKT, PLCγ, and CREB. Ligand-induced TrkB activation was associated with a reduction in HD pathologies in the striatum including decreased DARPP-32 levels, neurite degeneration of parvalbumin-containing interneurons, inflammation, and intranuclear huntingtin aggregates. Aggregates were also reduced in the cortex. Notably, LM22A-4 prevented deficits in dendritic spine density of medium spiny neurons. Moreover, R6/2 mice given LM22A-4 demonstrated improved downward climbing and grip strength compared with those given vehicle, though these groups had comparable rotarod performances and survival times. In BACHD mice, long-term LM22A-4 treatment (6 months) produced similar ameliorative effects. These results support the hypothesis that targeted activation of TrkB inhibits HD-related degenerative mechanisms, including spine loss, and may provide a disease mechanism-directed therapy for HD and other neurodegenerative conditions.


The Journal of Comparative Neurology | 2008

Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome

Nadia P. Belichenko; Pavel V. Belichenko; Hong Hua Li; William C. Mobley; Uta Francke

Rett syndrome (RTT) is caused by mutations in the X‐linked gene MECP2. While patients with RTT show widespread changes in brain function, relatively few studies document changes in brain structure and none examine in detail whether mutations causing more severe clinical phenotypes are linked to more marked changes in brain structure. To study the influence of MeCP2‐deficiency on the morphology of brain areas and axonal bundles, we carried out an extensive morphometric study of two Mecp2‐mutant mouse models (Mecp2B and Mecp2J) of RTT. Compared to wildtype littermates, striking changes included reduced brain weight (≈13% and ≈9%) and the volumes of cortex (≈11% and ≈7%), hippocampus (both by ≈8%), and cerebellum (≈12% and 8%) in both mutant mice. At 3 weeks of age, most (24 of 47) morphological parameters were significantly altered in Mecp2B mice; fewer (18) were abnormal in Mecp2J mice. In Mecp2B mice, significantly lower values for cortical area were distributed along the rostrocaudal axis, and there was a reduced length of the olfactory bulb (≈10%) and periaqueductal gray matter (≈16%). In Mecp2J mice, while there was significant reduction in rostrocaudal length of cortex, this parameter was also abnormal in hippocampus (≈10%), periaqueductal gray matter (≈13%), fimbria (≈18%), and anterior commissure (≈10%). Our findings define patterns of Mecp2 mutation‐induced changes in brain structure that are widespread and show that while some changes are present in both mutants, others are not. These observations provide the underpinning for studies to further define microarchitectural and physiological consequences of MECP2 deficiency. J. Comp. Neurol. 508:184–195, 2008.


Neurobiology of Disease | 2009

Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation

Nadia P. Belichenko; Pavel V. Belichenko; William C. Mobley

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene MECP2, encoding methyl-CpG-binding protein 2 (MeCP2). Few studies have explored dendritic morphology phenotypes in mouse models of RTT and none have determined whether these phenotypes in affected females are cell autonomous or nonautonomous. Using confocal microscopy analysis we have examined the structure of dendrites and spines in the motor cortex of wild-type (WT) and Mecp2-mutant mice expressing green fluorescent protein (GFP). In Mecp2 GFP female mice age 6-7 months we found significant decreases in the density of spines, width of dendrites, size of spine heads, while increases were found in the length of spine necks, dendritic irregularities, spineless spots, and long spines. We show for the first time that a lower density of spines and smaller spine head area are phenotypes that distinguish MeCP2+ from MeCP2- dendrites in female Mecp2 GFP mice. In Mecp2 GFP male mice at three weeks of age, we found reduced spine density, thinner apical oblique dendrites and increased dendritic irregularities and long spines. Significantly, the changes affected both MeCP2- and MeCP2+ neurons, pointing to the ability of MeCP2- to impact the structure of MeCP2+ neurons. Our findings are evidence that MeCP2 deficiency results in both cell autonomous and nonautonomous changes.


Journal of Alzheimer's Disease | 2014

Small Molecule p75NTR Ligands Reduce Pathological Phosphorylation and Misfolding of Tau, Inflammatory Changes, Cholinergic Degeneration, and Cognitive Deficits in AβPPL/S Transgenic Mice

Thuy-Vi V. Nguyen; Lin Shen; Lilith Vander Griend; Lisa N. Quach; Nadia P. Belichenko; Nay Saw; Tao Yang; Mehrdad Shamloo; Tony Wyss-Coray; Stephen M. Massa; Frank M. Longo

The p75 neurotrophin receptor (p75NTR) is involved in degenerative mechanisms related to Alzheimers disease (AD). In addition, p75NTR levels are increased in AD and the receptor is expressed by neurons that are particularly vulnerable in the disease. Therefore, modulating p75NTR function may be a significant disease-modifying treatment approach. Prior studies indicated that the non-peptide, small molecule p75NTR ligands LM11A-31, and chemically unrelated LM11A-24, could block amyloid-β-induced deleterious signaling and neurodegeneration in vitro, and LM11A-31 was found to mitigate neuritic degeneration and behavioral deficits in a mouse model of AD. In this study, we determined whether these in vivo findings represent class effects of p75NTR ligands by examining LM11A-24 effects. In addition, the range of compound effects was further examined by evaluating tau pathology and neuroinflammation. Following oral administration, both ligands reached brain concentrations known to provide neuroprotection in vitro. Compound induction of p75NTR cleavage provided evidence for CNS target engagement. LM11A-31 and LM11A-24 reduced excessive phosphorylation of tau, and LM11A-31 also inhibited its aberrant folding. Both ligands decreased activation of microglia, while LM11A-31 attenuated reactive astrocytes. Along with decreased inflammatory responses, both ligands reduced cholinergic neurite degeneration. In addition to the amelioration of neuropathology in AD model mice, LM11A-31, but not LM11A-24, prevented impairments in water maze performance, while both ligands prevented deficits in fear conditioning. These findings support a role for p75NTR ligands in preventing fundamental tau-related pathologic mechanisms in AD, and further validate the development of these small molecules as a new class of therapeutic compounds.


PLOS ONE | 2014

A Small Molecule p75NTR Ligand, LM11A-31, Reverses Cholinergic Neurite Dystrophy in Alzheimer's Disease Mouse Models with Mid- to Late-Stage Disease Progression

Danielle A. Simmons; Juliet K. Knowles; Nadia P. Belichenko; Gargi Banerjee; Carly Finkle; Stephen M. Massa; Frank M. Longo

Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimers disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6–8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12–13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed beyond early stages.


The Journal of Nuclear Medicine | 2015

PET Imaging of Translocator Protein (18 kDa) in a Mouse Model of Alzheimer's Disease Using N-(2,5-Dimethoxybenzyl)-2-18F-Fluoro-N-(2-Phenoxyphenyl)Acetamide

Michelle L. James; Nadia P. Belichenko; Thuy-Vi V. Nguyen; Lauren Andrews; Zhaoqing Ding; Hongguang Liu; Deepika Bodapati; Natasha Arksey; Bin Shen; Zhen Cheng; Tony Wyss-Coray; Sanjiv S. Gambhir; Frank M. Longo; Frederick T. Chin

Herein we aimed to evaluate the utility of N-(2,5-dimethoxybenzyl)-2-18F-fluoro-N-(2-phenoxyphenyl)acetamide (18F-PBR06) for detecting alterations in translocator protein (TSPO) (18 kDa), a biomarker of microglial activation, in a mouse model of Alzheimers disease (AD). Methods: Wild-type (wt) and AD mice (i.e., APPL/S) underwent 18F-PBR06 PET imaging at predetermined time points between the ages of 5–6 and 15–16 mo. MR images were fused with PET/CT data to quantify 18F-PBR06 uptake in the hippocampus and cortex. Ex vivo autoradiography and TSPO/CD68 immunostaining were also performed using brain tissue from these mice. Results: PET images showed significantly higher accumulation of 18F-PBR06 in the cortex and hippocampus of 15- to 16-mo-old APPL/S mice than age-matched wts (cortex/muscle: 2.43 ± 0.19 vs. 1.55 ± 0.15, P < 0.005; hippocampus/muscle: 2.41 ± 0.13 vs. 1.55 ± 0.12, P < 0.005). And although no significant difference was found between wt and APPL/S mice aged 9–10 mo or less using PET (P = 0.64), we were able to visualize and quantify a significant difference in 18F-PBR06 uptake in these mice using autoradiography (cortex/striatum: 1.13 ± 0.04 vs. 0.96 ± 0.01, P < 0.05; hippocampus/striatum: 1.266 ± 0.003 vs. 1.096 ± 0.017, P < 0.001). PET results for 15- to 16-mo-old mice correlated well with autoradiography and immunostaining (i.e., increased 18F-PBR06 uptake in brain regions containing elevated CD68 and TSPO staining in APPL/S mice, compared with wts). Conclusion: 18F-PBR06 shows great potential as a tool for visualizing TSPO/microglia in the progression and treatment of AD.


Human Molecular Genetics | 2016

A small molecule p75NTR ligand normalizes signalling and reduces Huntington’s disease phenotypes in R6/2 and BACHD mice

Danielle A. Simmons; Nadia P. Belichenko; Ellen C. Ford; Sarah Semaan; Marie Monbureau; Sruti Aiyaswamy; Cameron M. Holman; Christina Condon; Mehrdad Shamloo; Stephen M. Massa; Frank M. Longo

Abstract Decreases in the ratio of neurotrophic versus neurodegenerative signalling play a critical role in Huntington’s disease (HD) pathogenesis and recent evidence suggests that the p75 neurotrophin receptor (NTR) contributes significantly to disease progression. p75NTR signalling intermediates substantially overlap with those promoting neuronal survival and synapse integrity and with those affected by the mutant huntingtin (muHtt) protein. MuHtt increases p75NTR-associated deleterious signalling and decreases survival signalling suggesting that p75NTR could be a valuable therapeutic target. This hypothesis was investigated by examining the effects of an orally bioavailable, small molecule p75NTR ligand, LM11A-31, on HD-related neuropathology in HD mouse models (R6/2, BACHD). LM11A-31 restored striatal AKT and other pro-survival signalling while inhibiting c-Jun kinase (JNK) and other degenerative signalling. Normalizing p75NTR signalling with LM11A-31 was accompanied by reduced Htt aggregates and striatal cholinergic interneuron degeneration as well as extended survival in R6/2 mice. The p75NTR ligand also decreased inflammation, increased striatal and hippocampal dendritic spine density, and improved motor performance and cognition in R6/2 and BACHD mice. These results support small molecule modulation of p75NTR as an effective HD therapeutic strategy. LM11A-31 has successfully completed Phase I safety and pharmacokinetic clinical trials and is therefore a viable candidate for clinical studies in HD.


Journal of Experimental Medicine | 2017

Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity

Eva Czirr; Nicholas A. Castello; Kira I. Mosher; Joseph M. Castellano; Izumi V. Hinkson; Kurt M. Lucin; Bernat Baeza-Raja; Jae Kyu Ryu; Lulin Li; Sasha N. Farina; Nadia P. Belichenko; Frank M. Longo; Katerina Akassoglou; Markus Britschgi; John R. Cirrito; Tony Wyss-Coray

Recent genetic evidence supports a link between microglia and the complement system in Alzheimer’s disease (AD). In this study, we uncovered a novel role for the microglial complement receptor 3 (CR3) in the regulation of soluble &bgr;-amyloid (A&bgr;) clearance independent of phagocytosis. Unexpectedly, ablation of CR3 in human amyloid precursor protein–transgenic mice results in decreased, rather than increased, A&bgr; accumulation. In line with these findings, cultured microglia lacking CR3 are more efficient than wild-type cells at degrading extracellular A&bgr; by secreting enzymatic factors, including tissue plasminogen activator. Furthermore, a small molecule modulator of CR3 reduces soluble A&bgr; levels and A&bgr; half-life in brain interstitial fluid (ISF), as measured by in vivo microdialysis. These results suggest that CR3 limits A&bgr; clearance from the ISF, illustrating a novel role for CR3 and microglia in brain A&bgr; metabolism and defining a potential new therapeutic target in AD.

Collaboration


Dive into the Nadia P. Belichenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge