Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank M. You is active.

Publication


Featured researches published by Frank M. You.


BMC Bioinformatics | 2008

BatchPrimer3: A high throughput web application for PCR and sequencing primer design

Frank M. You; Naxin Huo; Yong Qiang Gu; Ming-cheng Luo; Yaqin Ma; Dave Hane; Gerard R. Lazo; Jan Dvorak; Olin D. Anderson

BackgroundMicrosatellite (simple sequence repeat – SSR) and single nucleotide polymorphism (SNP) markers are two types of important genetic markers useful in genetic mapping and genotyping. Often, large-scale genomic research projects require high-throughput computer-assisted primer design. Numerous such web-based or standard-alone programs for PCR primer design are available but vary in quality and functionality. In particular, most programs lack batch primer design capability. Such a high-throughput software tool for designing SSR flanking primers and SNP genotyping primers is increasingly demanded.ResultsA new web primer design program, BatchPrimer3, is developed based on Primer3. BatchPrimer3 adopted the Primer3 core program as a major primer design engine to choose the best primer pairs. A new score-based primer picking module is incorporated into BatchPrimer3 and used to pick position-restricted primers. BatchPrimer3 v1.0 implements several types of primer designs including generic primers, SSR primers together with SSR detection, and SNP genotyping primers (including single-base extension primers, allele-specific primers, and tetra-primers for tetra-primer ARMS PCR), as well as DNA sequencing primers. DNA sequences in FASTA format can be batch read into the program. The basic information of input sequences, as a reference of parameter setting of primer design, can be obtained by pre-analysis of sequences. The input sequences can be pre-processed and masked to exclude and/or include specific regions, or set targets for different primer design purposes as in Primer3Web and primer3Plus. A tab-delimited or Excel-formatted primer output also greatly facilitates the subsequent primer-ordering process. Thousands of primers, including wheat conserved intron-flanking primers, wheat genome-specific SNP genotyping primers, and Brachypodium SSR flanking primers in several genome projects have been designed using the program and validated in several laboratories.ConclusionBatchPrimer3 is a comprehensive web primer design program to develop different types of primers in a high-throughput manner. Additional methods of primer design can be easily integrated into future versions of BatchPrimer3. The program with source code and thousands of PCR and sequencing primers designed for wheat and Brachypodium are accessible at http://wheat.pw.usda.gov/demos/BatchPrimer3/.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

Ming-Cheng Luo; Yong Q. Gu; Frank M. You; Karin R. Deal; Yaqin Ma; Yuqin Hu; Naxin Huo; Yi Wang; Ji-Rui Wang; Shiyong Chen; Chad M. Jorgensen; Yong Zhang; Patrick E. McGuire; Shiran Pasternak; Joshua C. Stein; Doreen Ware; Melissa Kramer; W. Richard McCombie; Shahryar F. Kianian; Mihaela Martis; Klaus F. X. Mayer; Sunish K. Sehgal; Wanlong Li; Bikram S. Gill; Michael W. Bevan; Hana Šimková; Jaroslav Doležel; Song Weining; Gerard R. Lazo; Olin D. Anderson

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


BMC Genomics | 2011

Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence

Frank M. You; Naxin Huo; Karin R. Deal; Yong Q. Gu; Ming-Cheng Luo; Patrick E. McGuire; Jan Dvorak; Olin D. Anderson

BackgroundMany plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence.ResultsAn annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii- the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated.ConclusionAn annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml).


Theoretical and Applied Genetics | 2007

The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication

Ming-Cheng Luo; Z.-L. Yang; Frank M. You; Taihachi Kawahara; J. G. Waines; Jan Dvorak

The domestication of emmer wheat (Triticum turgidum spp. dicoccoides, genomes BBAA) was one of the key events during the emergence of agriculture in southwestern Asia, and was a prerequisite for the evolution of durum and common wheat. Single- and multilocus genotypes based on restriction fragment length polymorphism at 131 loci were analyzed to describe the structure of populations of wild and domesticated emmer and to generate a picture of emmer domestication and its subsequent diffusion across Asia, Europe and Africa. Wild emmer consists of two populations, southern and northern, each further subdivided. Domesticated emmer mirrors the geographic subdivision of wild emmer into the northern and southern populations and also shows an additional structure in both regions. Gene flow between wild and domesticated emmer occurred across the entire area of wild emmer distribution. Emmer was likely domesticated in the Diyarbakir region in southeastern Turkey, which was followed by subsequent hybridization and introgression from wild to domesticated emmer in southern Levant. A less likely scenario is that emmer was domesticated independently in the Diyarbakir region and southern Levant, and the Levantine genepool was absorbed into the genepool of domesticated emmer diffusing from southeastern Turkey. Durum wheat is closely related to domesticated emmer in the eastern Mediterranean and likely originated there.


BMC Genomics | 2010

Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes.

Eduard D. Akhunov; Alina Akhunova; Olin D. Anderson; James A. Anderson; N. K. Blake; Michael T. Clegg; Devin Coleman-Derr; Emily J. Conley; Curt Crossman; Karin R. Deal; Jorge Dubcovsky; Bikram S. Gill; Yong Q. Gu; Jakub Hadam; Hwa-Young Heo; Naxin Huo; Gerard R. Lazo; Ming-Cheng Luo; Yaqin Q. Ma; David E. Matthews; Patrick E. McGuire; Peter L. Morrell; Calvin O. Qualset; James Renfro; Dindo Tabanao; L. E. Talbert; Chao Tian; Donna M. Toleno; Marilyn L. Warburton; Frank M. You

BackgroundA genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat.ResultsNucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed.ConclusionsIn a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.


Plant Molecular Biology | 2004

Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat

Xiu-Ying Kong; Yong Qiang Gu; Frank M. You; Jorge Dubcovsky; Olin D. Anderson

Two overlapping bacterial artificial chromosome (BAC) clones from the B genome of the tetraploid wheat Triticum turgidum were identified, each of which contains one of the two high-molecular-weight (HMW) glutenin genes, comprising the complex Glu-B1 locus. The complete sequence (285 506 bp of DNA) of this chromosomal region was determined. The two paralogous x-type (Glu-1-1) and y-type (Glu-1-2) HMW-glutenin genes of the complex Glu-B1 locus were found to be separated by ca. 168 000 bp instead of the 51 000 bp separation previously reported for the orthologous Glu-D1 locus of Aegilops tauschii, the D-genome donor of hexaploid wheat. This difference in intergene spacing is due almost entirely to be the insertion of clusters of nested retrotransposons. Otherwise, the orientation and order of the HMW glutenins and adjacent genes were identical in the two genomes. A comparison of these orthologous regions indicates modes and patterns of sequence divergence, with implications for the overall Triticeae genome structure and evolution. A duplicate globulin gene, found 5′ of each HMW-glutenin gene, assists to tentatively define the original duplication event leading to the paralogous x- and y-type HMW-glutenin genes. The intergenic regions of the two loci are composed of different patterns and classes of retrotransposons, indicating that insertion times of these retroelements were after the divergence of the two wheat genomes. In addition, a putative receptor kinase gene near the y-type HMW-glutenin gene at the Glu-B1 locus is likely active as it matches recently reported ESTs from germinating barley endosperm. The presence of four genes represented only in the Triticeae endosperm ESTs suggests an endosperm-specific chromosome domain.


Theoretical and Applied Genetics | 2004

Genomic organization of the complex α-gliadin gene loci in wheat

Yong Qiang Gu; Curt Crossman; Xiuying Kong; Ming-Cheng Luo; Frank M. You; Devin Coleman-Derr; Jorge Dubcovsky; Olin D. Anderson

To better understand the molecular evolution of the large α-gliadin gene family, a half-million bacterial artificial chromosome (BAC) library clones from tetraploid durum wheat, Triticum turgidum ssp. durum (2n=4x=28, genome AB), were screened for large genomic segments carrying the α-gliadin genes of the Gli-2 loci on the group 6 homoeologous chromosomes. The resulting 220 positive BAC clones—each containing between one and four copies of α-gliadin sequences—were fingerprinted for contig assembly to produce contiguous chromosomal regions covering the Gli-2 loci. While contigs consisting of as many as 21 BAC clones and containing up to 17 α-gliadin genes were formed, many BAC clones remained as singletons. The accuracy of the order of BAC clones in the contigs was verified by Southern hybridization analysis of the BAC fingerprints using an α-gliadin probe. These results indicate that α-gliadin genes are not evenly dispersed in the Gli-2 locus regions. Hybridization of these BACs with probes for long terminal repeat retrotransposons was used to determine the abundance and distribution of repetitive DNA in this region. Sequencing of BAC ends indicated that 70% of the sequences were significantly similar to different classes of retrotransposons, suggesting that these elements are abundant in this region. Several mechanisms underlying the dynamic evolution of the Gli-2 loci are discussed.


International Journal of Molecular Sciences | 2015

Disease Resistance Gene Analogs (RGAs) in Plants.

Manoj Kumar Sekhwal; Pingchuan Li; Irene Lam; Xiue Wang; Sylvie Cloutier; Frank M. You

Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.


BMC Genomics | 2011

Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.)

Debbie Laudencia-Chingcuanco; Seedhabadee Ganeshan; Frank M. You; Brian Fowler; Ravindra N. Chibbar; Olin D. Anderson

BackgroundTo identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene Vrn-A1 was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined.ResultsAnalysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at p < 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the genes response to cold. We show that the Vrn-A1 locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that Ta.Vrn-A1 and Ta.Vrt1 originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct.ConclusionThis study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.


Journal of Heredity | 2012

The Origin of Spelt and Free-Threshing Hexaploid Wheat

Jan Dvorak; Karin R. Deal; Ming-Cheng Luo; Frank M. You; Keith von Borstel; Hamid Dehghani

It is widely believed that hexaploid wheat originated via hybridization of hulled tetraploid emmer with Aegilops tauschii (genomes DD) and that the nascent hexaploid was spelt, from which free-threshing wheat evolved by mutations. To reassess the role of spelt in the evolution of Triticum aestivum, 4 disomic substitution lines of Ae. tauschii chromosome 2D in Chinese Spring wheat were developed and one of them was used to map the Tg locus, which controls glume tenacity in Ae. tauschii, relative to simple sequence repeat (SSR) and expressed sequence tag loci on wheat chromosome 2D. The segregation of SSR markers was used to assess the presence of Tg alleles in 11 accessions of spelt, both from Europe and from Asia. Ten of them had an inactive tg allele in the D genome and most had an active Tg allele in the B genome. This is consistent with spelt being derived from free-threshing hexaploid wheat by hybridization of free-threshing wheat with hulled emmer. It is proposed that the tetraploid parent of hexaploid wheat was not hulled emmer but a free-threshing form of tetraploid wheat.

Collaboration


Dive into the Frank M. You's collaboration.

Top Co-Authors

Avatar

Ming-Cheng Luo

University of California

View shared research outputs
Top Co-Authors

Avatar

Jan Dvorak

University of California

View shared research outputs
Top Co-Authors

Avatar

Olin D. Anderson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gerard R. Lazo

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sylvie Cloutier

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Yaqin Ma

University of California

View shared research outputs
Top Co-Authors

Avatar

Yong Q. Gu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Naxin Huo

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Karin R. Deal

University of California

View shared research outputs
Top Co-Authors

Avatar

Yong Qiang Gu

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge