Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yaqin Ma is active.

Publication


Featured researches published by Yaqin Ma.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae

Ming-Cheng LuoM.-C. Luo; Karin R. Deal; Eduard Akhunov; Alina Akhunova; Olin D. Anderson; James A. Anderson; N. K. Blake; Michael T. Clegg; Devin Coleman-Derr; E. J. Conley; C. C. Crossman; Jorge Dubcovsky; Bikram S. Gill; Yong Qiang Gu; J. Hadam; Hwa-Young Heo; Naxin HuoN. Huo; Gerard R. Lazo; Yaqin Ma; Dwight E. Matthews; Patrick E. McGuire; Peter L. Morrell; Calvin O. Qualset; J. Renfro; Dindo Tabanao; L. E. Talbert; C. Tian; D. M. Toleno; Marilyn L. Warburton; F. M. You

Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere–telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere–telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere–telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated.


Proceedings of the National Academy of Sciences of the United States of America | 2013

A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

Ming-Cheng Luo; Yong Q. Gu; Frank M. You; Karin R. Deal; Yaqin Ma; Yuqin Hu; Naxin Huo; Yi Wang; Ji-Rui Wang; Shiyong Chen; Chad M. Jorgensen; Yong Zhang; Patrick E. McGuire; Shiran Pasternak; Joshua C. Stein; Doreen Ware; Melissa Kramer; W. Richard McCombie; Shahryar F. Kianian; Mihaela Martis; Klaus F. X. Mayer; Sunish K. Sehgal; Wanlong Li; Bikram S. Gill; Michael W. Bevan; Hana Šimková; Jaroslav Doležel; Song Weining; Gerard R. Lazo; Olin D. Anderson

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Plant Physiology | 2013

Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat

Eduard Akhunov; Sunish K. Sehgal; Hanquan Liang; Shichen Wang; Alina Akhunova; Gaganpreet Kaur; Wanlong Li; Kerrie L. Forrest; Deven R. See; Hana Šimková; Yaqin Ma; Matthew J. Hayden; Ming-Cheng Luo; Justin D. Faris; Jaroslav Dolezel; Bikram S. Gill

Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%–25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.


BMC Genomics | 2009

A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat

Yong Q. Gu; Yaqin Ma; Naxin Huo; John P. Vogel; Frank M. You; Gerard R. Lazo; William Nelson; Carol Soderlund; Jan Dvorak; Olin D. Anderson; Ming-Cheng Luo

BackgroundBrachypodium distachyon (Brachypodium) has been recognized as a new model species for comparative and functional genomics of cereal and bioenergy crops because it possesses many biological attributes desirable in a model, such as a small genome size, short stature, self-pollinating habit, and short generation cycle. To maximize the utility of Brachypodiu m as a model for basic and applied research it is necessary to develop genomic resources for it. A BAC-based physical map is one of them. A physical map will facilitate analysis of genome structure, comparative genomics, and assembly of the entire genome sequence.ResultsA total of 67,151 Brachypodium BAC clones were fingerprinted with the SNaPshot HICF fingerprinting method and a genome-wide physical map of the Brachypodium genome was constructed. The map consisted of 671 contigs and 2,161 clones remained as singletons. The contigs and singletons spanned 414 Mb. A total of 13,970 gene-related sequences were detected in the BAC end sequences (BES). These gene tags aligned 345 contigs with 336 Mb of rice genome sequence, showing that Brachypodium and rice genomes are generally highly colinear. Divergent regions were mainly in the rice centromeric regions. A dot-plot of Brachypodium contigs against the rice genome sequences revealed remnants of the whole-genome duplication caused by paleotetraploidy, which were previously found in rice and sorghum. Brachypodium contigs were anchored to the wheat deletion bin maps with the BES gene-tags, opening the door to Brachypodium-Triticeae comparative genomics.ConclusionThe construction of the Brachypodium physical map, and its comparison with the rice genome sequence demonstrated the utility of the SNaPshot-HICF method in the construction of BAC-based physical maps. The map represents an important genomic resource for the completion of Brachypodium genome sequence and grass comparative genomics. A draft of the physical map and its comparisons with rice and wheat are available at http://phymap.ucdavis.edu/brachypodium/.


PLOS Computational Biology | 2013

Combinatorial Pooling Enables Selective Sequencing of the Barley Gene Space

Stefano Lonardi; Denisa Duma; Matthew Alpert; Francesca Cordero; Marco Beccuti; Prasanna R. Bhat; Yonghui Wu; Gianfranco Ciardo; Burair Alsaihati; Yaqin Ma; Steve Wanamaker; Josh Resnik; Serdar Bozdag; MingCheng Luo; Timothy J. Close

For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.


BioMed Research International | 2011

BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

Hana Šimková; Jan Šafář; Marie Kubaláková; Pavla Suchánková; Jarmila Číhalíková; Heda Robert-Quatre; Perumal Azhaguvel; Yiqun Weng; Junhua Peng; Nora L. V. Lapitan; Yaqin Ma; Frank M. You; Ming-Cheng Luo; Jan Bartoš; Jaroslav Doležel

Positional cloning in bread wheat is a tedious task due to its huge genome size and hexaploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which makes their screening very laborious. Here, we present a targeted approach based on chromosome-specific BAC libraries. Such libraries were constructed from flow-sorted arms of wheat chromosome 7D. A library from the short arm (7DS) consisting of 49,152 clones with 113 kb insert size represented 12.1 arm equivalents whereas a library from the long arm (7DL) comprised 50,304 clones of 116 kb providing 14.9x arm coverage. The 7DS library was PCR screened with markers linked to Russian wheat aphid resistance gene DnCI2401, the 7DL library was screened by hybridization with a probe linked to greenbug resistance gene Gb3. The small number of clones combined with high coverage made the screening highly efficient and cost effective.


Plant Journal | 2015

Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome

María Muñoz-Amatriaín; Stefano Lonardi; Ming-Cheng Luo; Kavitha Madishetty; Jan T. Svensson; Matthew J. Moscou; Steve Wanamaker; Tao Jiang; Andris Kleinhofs; Gary J. Muehlbauer; Roger P. Wise; Nils Stein; Yaqin Ma; Edmundo Rodriguez; Dave Kudrna; Prasanna R. Bhat; Shiaoman Chao; Pascal Condamine; Shane Heinen; Josh Resnik; Rod A. Wing; Heather Witt; Matthew Alpert; Marco Beccuti; Serdar Bozdag; Francesca Cordero; Hamid Mirebrahim; Rachid Ounit; Yonghui Wu; Frank M. You

Summary Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole‐genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene‐containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical‐mapped gene‐bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene‐enriched BACs and are characterized by high recombination rates, there are also gene‐dense regions with suppressed recombination. We made use of published map‐anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D‐genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map‐based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene‐dense but low recombination is particularly relevant.


BMC Genomics | 2010

Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species.

Ming-Cheng Luo; Yaqin Ma; Frank M. You; Olin D. Anderson; David Kopecký; Hana Šimková; Jan Šafář; Jaroslav Doležel; Bikram S. Gill; Patrick E. McGuire; Jan Dvorak

BackgroundThe presence of closely related genomes in polyploid species makes the assembly of total genomic sequence from shotgun sequence reads produced by the current sequencing platforms exceedingly difficult, if not impossible. Genomes of polyploid species could be sequenced following the ordered-clone sequencing approach employing contigs of bacterial artificial chromosome (BAC) clones and BAC-based physical maps. Although BAC contigs can currently be constructed for virtually any diploid organism with the SNaPshot high-information-content-fingerprinting (HICF) technology, it is currently unknown if this is also true for polyploid species. It is possible that BAC clones from orthologous regions of homoeologous chromosomes would share numerous restriction fragments and be therefore included into common contigs. Because of this and other concerns, physical mapping utilizing the SNaPshot HICF of BAC libraries of polyploid species has not been pursued and the possibility of doing so has not been assessed. The sole exception has been in common wheat, an allohexaploid in which it is possible to construct single-chromosome or single-chromosome-arm BAC libraries from DNA of flow-sorted chromosomes and bypass the obstacles created by polyploidy.ResultsThe potential of the SNaPshot HICF technology for physical mapping of polyploid plants utilizing global BAC libraries was evaluated by assembling contigs of fingerprinted clones in an in silico merged BAC library composed of single-chromosome libraries of two wheat homoeologous chromosome arms, 3AS and 3DS, and complete chromosome 3B. Because the chromosome arm origin of each clone was known, it was possible to estimate the fidelity of contig assembly. On average 97.78% or more clones, depending on the library, were from a single chromosome arm. A large portion of the remaining clones was shown to be library contamination from other chromosomes, a feature that is unavoidable during the construction of single-chromosome BAC libraries.ConclusionsThe negligibly low level of incorporation of clones from homoeologous chromosome arms into a contig during contig assembly suggested that it is feasible to construct contigs and physical maps using global BAC libraries of wheat and almost certainly also of other plant polyploid species with genome sizes comparable to that of wheat. Because of the high purity of the resulting assembled contigs, they can be directly used for genome sequencing. It is currently unknown but possible that equally good BAC contigs can be also constructed for polyploid species containing smaller, more gene-rich genomes.


BMC Genomics | 2009

A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms

Ming-Cheng Luo; Kenong Xu; Yaqin Ma; Karin R. Deal; Charles Nicolet; Jan Dvorak

BackgroundCurrent techniques of screening bacterial artificial chromosome (BAC) libraries for molecular markers during the construction of physical maps are slow, laborious and often assign multiple BAC contigs to a single locus on a genetic map. These limitations are the principal impediment in the construction of physical maps of large eukaryotic genomes. It is hypothesized that this impediment can be overcome by screening multidimensional pools of BAC clones using the highly parallel Illumina GoldenGate™ assay.ResultsTo test the efficacy of the Golden Gate assay in BAC library screening, multidimensional pools involving 302976 Aegilops tauschii BAC clones were genotyped for the presence/absence of specific gene sequences with multiplexed Illumina GoldenGate oligonucleotide assays previously used to place single nucleotide polymorphisms on an Ae. tauschii genetic map. Of 1384 allele-informative oligonucleotide assays, 87.6% successfully clustered BAC pools into those positive for a BAC clone harboring a specific gene locus and those negative for it. The location of the positive BAC clones within contigs assembled from 199190 fingerprinted Ae. tauschii BAC clones was used to evaluate the precision of anchoring of BAC clones and contigs on the Ae. tauschii genetic map. For 41 (95%) assays, positive BAC clones were neighbors in single contigs. Those contigs could be unequivocally assigned to loci on the genetic map. For two (5%) assays, positive clones were in two different contigs and the relationships of these contigs to loci on the Ae. tauschii genetic map were equivocal. Screening of BAC libraries with a simple five-dimensional BAC pooling strategy was evaluated and shown to allow direct detection of positive BAC clones without the need for manual deconvolution of BAC clone pools.ConclusionThe highly parallel Illumina oligonucleotide assay is shown here to be an efficient tool for screening BAC libraries and a strategy for high-throughput anchoring of BAC contigs on genetic maps during the construction of physical maps of eukaryotic genomes. In most cases, screening of BAC libraries with Illumina oligonucleotide assays results in the unequivocal relationship of BAC clones with loci on the genetic map.

Collaboration


Dive into the Yaqin Ma's collaboration.

Top Co-Authors

Avatar

Ming-Cheng Luo

University of California

View shared research outputs
Top Co-Authors

Avatar

Frank M. You

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh Resnik

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Alpert

University of California

View shared research outputs
Top Co-Authors

Avatar

Olin D. Anderson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge