Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank Park is active.

Publication


Featured researches published by Frank Park.


Cancer Research | 2018

A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance

Kinsie E. Arnst; Yuxi Wang; Dong Jin Hwang; Yi Xue; Terry Costello; David Hamilton; Qiang Chen; Jinliang Yang; Frank Park; James T. Dalton; Duane D. Miller; Wei Li

Antimitotics that target tubulin are among the most useful chemotherapeutic drugs, but their clinical activity is often limited by the development of multidrug resistance. We recently discovered the novel small-molecule DJ101 as a potent and metabolically stable tubulin inhibitor that can circumvent the drug efflux pumps responsible for multidrug resistance of existing tubulin inhibitors. In this study, we determined the mechanism of action of this drug. The basis for its activity was illuminated by solving the crystal structure of DJ101 in complex with tubulin at a resolution of 2.8Å. Investigations of the potency of DJ101 in a panel of human metastatic melanoma cell lines harboring major clinically relevant mutations defined IC50 values of 7-10 nmol/L. In cells, DJ101 disrupted microtubule networks, suppressed anchorage-dependent melanoma colony formation, and impaired cancer cell migration. In melanoma-bearing mice, DJ101 administration inhibited tumor growth and reduced lung metastasis in the absence of observable toxicity. DJ101 also completely inhibited tumor growth in a paclitaxel-resistant xenograft mouse model of human prostate cancer (PC-3/TxR), where paclitaxel was minimally effective. Our findings offer preclinical proof of concept for the continued development of DJ101 as a next-generation tubulin inhibitor for cancer therapy.Significance: These findings offer preclinical proof of concept for the continued development of DJ101 as a next-generation antitubulin drug for cancer therapy. Cancer Res; 78(1); 265-77. ©2017 AACR.


Journal of Molecular Histology | 2015

Localization and expression profile of Group I and II Activators of G-protein Signaling in the kidney

Marek Lenarczyk; Jeffrey D. Pressly; Joanna Arnett; Kevin R. Regner; Frank Park

Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia–reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24xa0h by fivefold (Pxa0<xa00.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (Pxa0<xa00.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (Pxa0<xa00.05) by 75–80xa0% in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.


Frontiers in Physiology | 2015

Accessory proteins for heterotrimeric G-proteins in the kidney

Frank Park

Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.


Physiological Genomics | 2016

Heterotrimeric G protein signaling in polycystic kidney disease

Taketsugu Hama; Frank Park

Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.


Journal of Pharmacology and Experimental Therapeutics | 2015

Activators of G-protein Signaling in the kidney

Frank Park

Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation–inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.


BMC Research Notes | 2018

Urinary exosomal expression of activator of G protein signaling 3 in polycystic kidney disease

Krishna C. Keri; Kevin R. Regner; Aaron Dall; Frank Park

ObjectivePKD is a genetic disease that is characterized by abnormally proliferative epithelial cells in the kidney and liver. Urinary exosomes have been previously examined as a source of unique proteins that may be used to diagnose and monitor the progression of PKD. Previous studies by our group have shown that AGS3, which is a receptor-independent regulator G-proteins, was markedly upregulated in RTECs during kidney injury including PKD. In this study, our goal was to determine whether AGS3 could be measured in exosomes using animals and humans with PKD.ResultsIn our study, urinary exosomes were isolated from PCK rats and the control Sprague–Dawley (SD) rats. AGS3 expression was significantly increased (Pu2009<u20090.05) in PKD versus SD rats at 16xa0weeks of age. This increase was detectable in a time-dependent manner from 8xa0weeks of age and peaked atu2009~u200916–20xa0weeks (length of study). Similarly, in exosomes from human urine samples with PKD, AGS3 expression was significantly increased (Pu2009<u20090.05) compared to healthy human controls where AGS3 was largely undetectable. In conclusion, the detection of AGS3 in urinary exosomes may be a novel biomarker for PKD, and provide new insight into the biology of tubular epithelial cell function during cystic disease progression.


Journal of Pharmacology and Experimental Therapeutics | 2017

Selective cannabinoid 2 receptor stimulation reduces tubular epithelial cell damage following renal ischemia-reperfusion injury

Jeffrey D. Pressly; Suni M. Mustafa; Ammaar H. Abidi; Sahar Alghamdi; Pankaj Pandey; Kuldeep K. Roy; Robert J. Doerksen; Bob M. Moore; Frank Park

Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury (AKI), which is an increasing problem in the clinic and has been associated with elevated rates of mortality. Therapies to treat AKI are currently not available, so identification of new targets that can be modulated to ameliorate renal damage upon diagnosis of AKI is essential. In this study, a novel cannabinoid receptor 2 (CB2) agonist, SMM-295 [3′-methyl-4-(2-(thiophen-2-yl)propan-2-yl)biphenyl-2,6-diol], was designed, synthesized, and tested in vitro and in silico. Molecular docking of SMM-295 into a CB2 active-state homology model showed that SMM-295 interacts well with key amino acids to stabilize the active state. In human embryonic kidney 293 cells, SMM-295 was capable of reducing cAMP production with 66-fold selectivity for CB2 versus cannabinoid receptor 1 and dose-dependently increased mitogen-activated protein kinase and Akt phosphorylation. In vivo testing of the CB2 agonist was performed using a mouse model of bilateral IRI, which is a common model to mimic human AKI, where SMM-295 was immediately administered upon reperfusion of the kidneys after the ischemia episode. Histologic damage assessment 48 hours after reperfusion demonstrated reduced tubular damage in the presence of SMM-295. This was consistent with reduced plasma markers of renal dysfunction (i.e., creatinine and neutrophil gelatinase–associated lipocalin) in SMM-295–treated mice. Mechanistically, kidneys treated with SMM-295 were shown to have elevated activation of Akt with reduced terminal deoxynucleotidyl transferase–mediated digoxigenin-deoxyuridine nick-end labeling (TUNEL)–positive cells compared with vehicle-treated kidneys after IRI. These data suggest that selective CB2 receptor activation could be a potential therapeutic target in the treatment of AKI.


American Journal of Physiology-renal Physiology | 2017

DNA repair in ischemic acute kidney injury.

Jeffrey D. Pressly; Frank Park

Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.


Journal of Molecular Signaling | 2015

Activator of G-protein Signaling 3 Controls Renal Epithelial Cell Survival and ERK5 Activation.

Shauna Rasmussen; Michelle Kwon; Jeffrey D. Pressly; Joe B. Blumer; Kevin R. Regner; Frank Park

Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.


Bioorganic & Medicinal Chemistry | 2018

An antimycobacterial pleuromutilin analogue effective against dormant bacilli

Maddie R. Lemieux; Shajila Siricilla; Katsuhiko Mitachi; Shakiba Eslamimehr; Yuehong Wang; Dong Yang; Jeffrey D. Pressly; Ying Kong; Frank Park; Scott G. Franzblau; Michio Kurosu

Pleuromutilin is a promising pharmacophore to design new antibacterial agents for Gram-positive bacteria. However, there are limited studies on the development of pleuromutilin analogues that inhibit growth of Mycobacterium tuberculosis (Mtb). In screening of our library of pleuromutilin derivatives, UT-800 (1) was identified to kill replicating- and non-replicating Mtb with the MIC values of 0.83 and 1.20u202fμg/mL, respectively. UT-800 also kills intracellular Mtb faster than rifampicin at 2× MIC concentrations. Pharmacokinetic studies indicate that 1 has an oral bioavailability with an average F-value of 27.6%. Pleuromutilin may have the potential to be developed into an orally administered anti-TB drug.

Collaboration


Dive into the Frank Park's collaboration.

Top Co-Authors

Avatar

Jeffrey D. Pressly

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Kevin R. Regner

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Duane D. Miller

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Dall

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Ammaar H. Abidi

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bob M. Moore

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Charles R. Yates

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Csaba P. Kovesdy

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge