Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank R. Brennan is active.

Publication


Featured researches published by Frank R. Brennan.


Infection and Immunity | 2002

Characterization of Salmonella enterica Derivatives Harboring Defined aroC and Salmonella Pathogenicity Island 2 Type III Secretion System (ssaV) Mutations by Immunization of Healthy Volunteers

Zoë Hindle; Steven Chatfield; Jo Phillimore; Matthew Bentley; Julie Johnson; Catherine A. Cosgrove; Marjan Ghaem-Maghami; Amy Sexton; Mohammad Shamim Khan; Frank R. Brennan; Paul Everest; Tao Wu; Derek Pickard; David W. Holden; Gordon Dougan; George E. Griffin; Deborah House; Joseph David Santangelo; Shahid A. Khan; Jaqueline E. Shea; Robert Feldman; David Lewis

ABSTRACT The attenuation and immunogenicity of two novel Salmonella vaccine strains, Salmonella enterica serovar Typhi (Ty2 ΔaroC ΔssaV, designated ZH9) and S. enterica serovar Typhimurium (TML ΔaroC ΔssaV, designated WT05), were evaluated after their oral administration to volunteers as single escalating doses of 107, 108, or 109 CFU. ZH9 was well tolerated, not detected in blood, nor persistently excreted in stool. Six of nine volunteers elicited anti-serovar Typhi lipopolysaccharide (LPS) immunoglobulin A (IgA) antibody-secreting cell (ASC) responses, with three of three vaccinees receiving 108 and two of three receiving 109 CFU which elicited high-titer LPS-specific serum IgG. WT05 was also well tolerated with no diarrhea, although the administration of 108 and 109 CFU resulted in shedding in stools for up to 23 days. Only volunteers immunized with 109 CFU of WT05 mounted detectable serovar Typhimurium LPS-specific ASC responses and serum antibody responses were variable. These data indicate that mutations in type III secretion systems may provide a route to the development of live vaccines in humans and highlight significant differences in the potential use of serovars Typhimurium and Typhi.


Vaccine | 2001

Antibodies against a truncated Staphylococcus aureus fibronectin-binding protein protect against dissemination of infection in the rat

Anna Rennermalm; Ying-Hua Li; Linda Bohaufs; Connie Jarstrand; Annelie Brauner; Frank R. Brennan; Jan-Ingmar Flock

Staphylococcus aureus bacteraemia (SAB) originating from local infections can lead to severe secondary infections such as endocarditis. The protective effect of antibodies against secondary infections was studied in a rat model, where a local joint infection leads to bacteraemia and endocarditis on damaged aortic valves. In this study, immunizations with a truncated D2-domain of the S. aureus fibronectin-binding protein displayed on a cow-pea mosaic virus (CPMV-D) carrier induced protection against endocarditis (P < 0.05). Opsonization of S. aureus with antibodies raised against CPMV-D stimulated both neutrophil activity and macrophage phagocytosis in vitro. Furthermore, intravenous administration of these antibodies protected mice from weight loss due to SAB.


Journal of Immunological Methods | 1998

Intranasal immunization with a plant virus expressing a peptide from HIV-1 gp41 stimulates better mucosal and systemic HIV-1-specific IgA and IgG than oral immunization

Zarmina Durrani; Tracey L. McInerney; Lesley McLain; Tim D. Jones; Trevor Bellaby; Frank R. Brennan; Nigel J. Dimmock

Control of pandemic human immunodeficiency virus type 1 (HIV-1) infection ideally requires specific mucosal immunity to protect the genital regions through which transmission more often occurs. Thus a vaccine that stimulates a disseminated mucosal and systemic protective immune response would be extremely useful. Here we have investigated the ability of a chimeric plant virus, cowpea mosaic virus (CPMV), expressing a 22 amino acid peptide (residues 731-752) of the transmembrane gp41 protein of HIV-1 IIIB (CPMV-HIV/1), to stimulate HIV-1-specific and CPMV-specific mucosal and serum antibody following intranasal or oral immunization together with the widely used mucosal adjuvant, cholera toxin. CPMV-HIV/1 has been shown previously to stimulate HIV-1-specific serum antibody in mice by parenteral immunization. All mice immunized intranasally with two doses of 10 microg of CPMV-HIV/1 produced both HIV-1-specific IgA in faeces as well as higher levels of specific, predominantly IgG2a, serum antibody. Thus there was a predominantly T helper 1 cell response. All mice also responded strongly to CPMV epitopes. Oral immunization of the chimeric cowpea mosaic virus was less effective, even at doses of 500 microg or greater, and stimulated HIV-1-specific serum antibody in only a minority of mice, and no faecal HIV-1 specific IgA.


Vaccine | 2001

Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.

Jan Langeveld; Frank R. Brennan; Jorge Luis Martínez-Torrecuadrada; Tim Jones; Ronald S. Boshuizen; Carmen Vela; J. Ignacio Casal; Søren Kamstrup; Kristian Dalsgaard; Rob H. Meloen; Mary M Bendig; W. O. Hamilton

A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.


Vaccine | 1999

Immunogenicity of peptides derived from a fibronectin-binding protein of S. aureus expressed on two different plant viruses

Frank R. Brennan; Tim D. Jones; M. Longstaff; S. Chapman; Trevor Bellaby; H. Smith; F. Xu; W. O. Hamilton; Jan-Ingmar Flock

The D2 peptide derived from an S. aureus fibronectin-binding protein (FnBP) was expressed on the surface of the icosahedral cowpea mosaic virus (amino acids 1-30 of D2) or on the rod-shaped potato virus X (amino acids 1-38 of D2), termed CPMV-MAST1 and PVX-MAST8, respectively. Mice and rats were immunized subcutaneously with CPMV-MAST1 and mice with PVX-MAST8 in adjuvant and high titres of FnBP-specific antibody were obtained. The mouse IgG was predominantly of the IgG2a and IgG2b isotypes, which strongly bound complement component C1q, suggesting a TH1-bias in the peptide-specific responses. Sera from mice and rats immunized with CPMV-MAST1 and from mice immunized with PVX-MAST8 were shown to completely inhibit the binding of fibronectin to immobilised recombinant FnBP and rat sera against CPMV-MAST1 were able to block adherence of S. aureus to fibronectin. These studies demonstrate that the D2 peptide is highly immunogenic when expressed on 2 different plant viruses and highlight the potential of plant virus-based vaccines to protect against S. aureus infections.


Vaccine | 1999

Analysis of the ability of five adjuvants to enhance immune responses to a chimeric plant virus displaying an HIV-1 peptide.

Tracey L. McInerney; Frank R. Brennan; Tim D. Jones; Nigel J. Dimmock

The ability of five different adjuvants (alum, complete Freunds adjuvant, Quil A, AdjuPrime and Ribi) to stimulate humoral and T-cell mediated immune responses against a purified chimeric virus particle was investigated. Each adjuvant was administered subcutaneously to adult mice together with 10 microg of wildtype (wt) cowpea mosaic virus (CPMV) or a chimeric CPMV displaying the HIV-1 gp41 peptide, residues 731-752. All preparations elicited strong antibody responses to CPMV, but Quil A elicited the highest and most consistent responses to the HIV-1 peptide. This finding was reflected in both ELISA titres with immobilized peptide and in HIV-1-neutralizing antibody. In addition Quil A was also, the only adjuvant to stimulate an in vitro proliferative T-cell response. Surprisingly with all adjuvant formulations a predominately IgG2a anti-gp41 peptide response was observed, indicating a type 1 T-helper cell-like response. Furthermore, the efficiency of the CPMV display system was demonstrated by its ability to induce good levels of peptide specific antibody in the absence of any adjuvant.


Vaccine | 2003

Salmonella typhi and S typhimurium derivatives harbouring deletions in aromatic biosynthesis and Salmonella Pathogenicity Island-2 (SPI-2) genes as vaccines and vectors.

Shahid A. Khan; Richard Stratford; Tao Wu; Nicola D. McKelvie; Trevor Bellaby; Zoë Hindle; Katharine A Sinha; Shayne Eltze; Piero Mastroeni; Derek Pickard; Gordon Dougan; Steven Chatfield; Frank R. Brennan

The S. typhimurium strain (TML deltaaroC deltassaV) WT05, harbouring defined deletions in genes involved in both the aromatic biosynthesis pathway (aroC) and the Salmonella Pathogenicity Island-2 (SPI-2) (ssaV) was shown to be significantly attenuated in C57 BL/6 interferon gamma knockout mice following oral inoculation. Similarly, the S. typhi strain (Ty2 deltaaroC deltassaV) ZH9 harbouring the aroC and ssaV mutations propagated less efficiently than wild type in human macrophages. These studies demonstrated the attractive safety profile of the aroC ssaV mutant combination. Strains S. typhimurium (TML deltaaroC deltassaV ) WT05 and S. typhi (Ty2 deltaaroC deltassaV) ZH9 were subsequently tested as vaccine vectors to deliver E. coli heat-labile toxin (LT-B) mucosally to mice. Mice inoculated orally with S. typhimurium (TML deltaaroC deltassaV) WT05 expressing LT-B (WT05/LT-B) elicited high titres of both LT-specific serum IgG and intestinal IgA, although no specific IgA was detected in the vagina. Similarly, intranasal inoculation of mice with S. typhi (Ty2 deltaaroC deltassaV) ZH9 expressing LT-B (ZH9/LT-B) elicited even higher titres of LT-specific serum antibody as well as LT-specific Ig in the vagina. We conclude that deltaaroC deltassaV strains of Salmonella are highly attenuated and are promising candidates both as human typhoid vaccines and as vaccine vectors for the delivery of heterologous antigens.


Molecular Biotechnology | 2001

Cowpea mosaic virus as a vaccine carrier of heterologous antigens

Frank R. Brennan; Tim D. Jones; W. O. Hamilton

The plant virus, cowpea mosaic virus (CPMV), has been developed as an expression and presentation system to display antigenic epitopes derived from a number of vaccine targets including infectious disease agents and tumors. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to live replicating virus and bacterial vaccines. A number of CVPs have now been generated and their immunogenicity examined in a number of animal species. This review details the humoral and cellular immune responses generated by these CVPs following both parenteral and mucosal delivery and highlights the potential of CVPs to elicit protective immunity from both viral and bacterial infection.


Molecular Biotechnology | 2004

Preclinical safety testing of biotechnology-derived pharmaceuticals: understanding the issues and addressing the challenges.

Frank R. Brennan; Leigh Shaw; Mark G. Wing; Christine Robinson

The unique and complex nature of biotechnology-derived pharmaceuticals has meant that it is often not possible to follow the conventional safety testing programs used for chemicals, and hence they are evaluated on a case-by-case basis. Nonclinical safety testing programs must be rationally designed with a strong scientific understanding of the product, including its method of manufacture, purity, sequence, structure, species specificity, pharmacological and immunological effects, and intended clinical use. This knowledge, coupled with a firm understanding of the regulatory requirements for particular product types, will ensure that the most sensitive and regulatory-compliant test systems are used to optimize the chances of gaining regulatory approval for clinical testing or marketing authorization in the shortest possible time frame.


Vaccine | 2002

Characterization of the immune response to canine parvovirus induced by vaccination with chimaeric plant viruses

B.L. Nicholas; Frank R. Brennan; Jorge Luis Martínez-Torrecuadrada; J.I. Casal; W.D.O. Hamilton; D. Wakelin

NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.

Collaboration


Dive into the Frank R. Brennan's collaboration.

Top Co-Authors

Avatar

W. O. Hamilton

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahid A. Khan

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

B.L. Nicholas

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

D. Wakelin

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Derek Pickard

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge