Frank Rice
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Rice.
International Journal of Infrared and Millimeter Waves | 2003
Jacob W. Kooi; Goutam Chattopadhyay; Stafford Withington; Frank Rice; Jonas Zmuidzinas; Christopher K. Walker; Ghassan Yassin
We describe a waveguide to thin-film microstrip transition for high-performance submillimetre wave and teraherz applications. The proposed constant-radius probe couples thin-film microstrip line, to full-height rectangular waveguide with better than 99% efficiency (VSWR ≤ 1.20) and 45% fractional bandwidth. Extensive HFSS simulations, backed by scale-model measurements, are presented in the paper. By selecting the substrate material and probe radius, any real impedance between ≈ 15-60 Ω can be achieved. The radial probe gives significantly improved performance over other designs discussed in the literature. Although our primary application is submillimetre wave superconducting mixers, we show that membrane techniques should allow broad-band waveguide components to be constructed for the THz frequency range.
IEEE Transactions on Applied Superconductivity | 2007
Alexey A. Karpov; David W. Miller; Frank Rice; J. A. Stern; Bruce Bumble; H. G. LeDuc; Jonas Zmuidzinas
We present the development of a low noise 1.2 THz and 1.4 THz SIS mixers for heterodyne spectrometry on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and Herschel Space Observatory. This frequency range is above the limit for the commonly used Nb quasi particle SIS junctions, and a special type of hybrid Nb/AlN/NbTiN junctions has been developed for this project. We are using a quasi-optical mixer design with two Nb/AlN/NbTiN junctions with an area of 0.25. The SIS junction tuning circuit is made of Nb and gold wire layers. At 1.13 THz the minimum SIS receiver uncorrected noise temperature is 450 K. The SIS receiver noise corrected for the loss in the LO coupler and in the cryostat optics is 350-450 K across 1.1-1.25 THz band. The receiver has a uniform sensitivity in a full 4-8 GHz IF band. The 1.4 THz SIS receiver test at 1.33-1.35 THz gives promising results, although limited by the level of available LO power. Extrapolation of the data obtained with low LO power level shows a possibility to reach 500 K DSB receiver noise using already existing SIS mixer.
IEEE Microwave and Guided Wave Letters | 1999
Goutam Chattopadhyay; Frank Rice; David P. Miller; Henry G. LeDuc; Jonas Zmuidzinas
We report on the design and performance of a 530-GHz balanced SIS mixer, the first balanced mixer in this frequency range. This quasi-optical balanced mixer utilizes a cross-slot antenna on a hyperhemispherical substrate lens with eight superconductor-insulator-superconductor (SIS) junctions and a 180/spl deg/ lumped element IF hybrid circuit. The local oscillator (LO) and the radio frequency (RF) signal, orthogonal in polarization to each other, are coupled to the mixer using a wire-grid polarizer. The noise performance of the mixer is excellent, giving an uncorrected receiver noise temperature of 105 K (DSB) at 528 GHz.
Proceedings of SPIE | 2004
Alexandre Karpov; David P. Miller; Frank Rice; Jeffrey A. Stern; Bruce Bumble; H. G. LeDuc; Jonas Zmuidzinas
We present a low noise SIS mixer developed for the 1.2 THz band of the heterodyne spectrometer of the Herschel Space Observatory. With the launch of the Herschel SO in 2007, this device will be among the first SIS mixers flown in space. This SIS mixer has a quasi-optical design, with a double slot planar antenna and an extended spherical lens made of pure Si. The SIS junctions are Nb/AlN/NbTiN with a critical current density of about 30 KA/cm2 and with the junction area of a quarter of a micron square. Our mixer circuit uses two SIS junctions biased in parallel. To improve the simultaneous suppression of the Josephson current in each of them, we use diamond-shaped junctions. A low loss Nb/Au micro-strip transmission line is used for the first time in the mixer circuit well above the gap frequency of Nb. The minimum uncorrected Double Sideband receiver noise is 550 K (Y=1.34). The minimum receiver noise corrected for the local oscillator beam splitter and for the cryostat window is 340 K, about 6 hv/k, the lowest value achieved thus far in the THz frequencies range.
Journal of Vacuum Science & Technology B | 2004
Anupama B. Kaul; Bruce Bumble; Karen A. Lee; H. G. LeDuc; Frank Rice; Jonas Zmuidzinas
We report on a fabrication process that uses SOI substrates and micromachining techniques to form wide-IF SIS mixer devices that have suspended metal beam leads for rf grounding. The mixers are formed on thin 25 µm membranes of Si, and are designed to operate in the 200–300 GHz band. Potential applications are in tropospheric chemistry, where increased sensitivity detectors and wide-IF bandwidth receivers are desired. They will also be useful in astrophysics to monitor absorption lines for CO at 230 GHz to study distant, highly redshifted galaxies by reducing scan times. Aside from a description of the fabrication process, electrical measurements of these Nb/Al–AlNx/Nb trilayer devices will also be presented. Since device quality is sensitive to thermal excursions, the new beam lead process appears to be compatible with conventional SIS device fabrication technology.
Astronomical Telescopes and Instrumentation | 2003
Frank Rice; Matthew Sumner; Jonas Zmuidzinas; R. Hu; H. G. LeDuc; Andrew I. Harris; David P. Miller
We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double-sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receivers single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low-noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP II). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter applications goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.
IEEE Transactions on Terahertz Science and Technology | 2014
Jacob W. Kooi; Richard A. Chamberlin; Raquel R. Monje; A. Kovács; Frank Rice; Hiroshige Yoshida; Brian Force; Kevin Cooper; David Harry Miller; Marty Gould; Dariusz C. Lis; Bruce Bumble; Rick LeDuc; Jeffrey A. Stern; T. G. Phillips
In this paper, we report on balanced SIS receivers covering the astronomical important 180-720 GHz submillimeter atmospheric window. To facilitate remote observations and automated spectral line surveys, fully synthesized local oscillators are employed. High-current-density Nb-AlN-Nb superconducting-insulating-superconducting (SIS) tunnel junctions are used as the mixing element. The measured double-sideband (DSB) 230 GHz receiver noise temperature, uncorrected for optics loss, ranges from 50 K at 185 GHz, 33 K at 246 GHz, to 51 K at 280 GHz. In this frequency range the mixer has a DSB conversion gain of 0 ±1.5 dB. The measured 460 GHz double-sideband receiver noise temperature, uncorrected for optics loss, is 32 K at 400 GHz, 34 K at 460 GHz, and 61 K at 520 GHz. Similar to the 230 GHz balanced mixer, the DSB mixer conversion gain is 1 ±1 dB. To help optimize performance, the mixer IF circuits and bias injection are entirely planar by design. Dual-frequency observation, by means of separating the incoming circular polarized electric field into two orthogonal components, is another important mode of operation offered by the new facility instrumentation. Instrumental stability is excellent supporting the LO noise cancellation properties of the balanced mixer configuration. In the spring of 2012 the dual-frequency 230/460 SIS receiver was successfully installed at Caltech Submillimeter Observatory (CSO), Mauna Kea, HI, USA.
Proceedings of SPIE | 2006
Alexey A. Karpov; David P. Miller; Frank Rice; J. A. Stern; Bruce Bumble; H. G. LeDuc; Jonas Zmuidzinas
We summarize the development and the delivery of two SIS mixers for the 1.1-1.25 THz band of the heterodyne spectrometer of Herschel Observatory (HSO). The quasi-optical SIS mixer has two Nb/AlN/NbTiN junctions with the area of 0.25 um2. The Josephson critical current density in the junction is 30-50 kA/cm2. The tuning circuit integrated with SIS junction has the base electrode of Nb and a gold wire layer. With the new SIS mixers the test receiver maximum Y factor is 1.41. The minimum receiver uncorrected DSB noise temperature is 450 K. The SIS receiver noise corrected for the loss in the optics is 350-450 K across the 1100-1250 GHz band. The receiver has a uniform sensitivity in the full IF range of 4-8 GHz. The sub-micron sized SIS junction shape is optimized to ease the suppression of the Josephson current, and the receiver operation is stable. The measured mixer beam pattern is symmetrical and, in a good agreement with the requirements, has the f/d =4.25 at the central frequency of the operation band. The minimum DSB SIS receiver noise is close to 6 hv/k, the lowest value achieved thus far in the THz frequencies range.
Proceedings of SPIE | 2010
Michael L. Edgar; M. Emprechtinger; Alexandre Karpov; Robert Lin; Sean Lin; Frank Maiwald; Imran Mehdi; David P. Miller; Simon J. E. Radford; Frank Rice; J. Ward; Jonas Zmuidzinas
CASIMIR, the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver, is a far-infrared and submillimeter heterodyne spectrometer, being developed for the Stratospheric Observatory For Infrared Astronomy, SOFIA. CASIMIR will use newly developed superconducting-insulating-superconducting (SIS) mixers. Combined with the 2.5 m mirror of SOFIA, these detectors will allow observations with high sensitivity to be made in the frequency range from 500 GHz up to 1.4 THz. Initially, at least 5 frequency bands in this range are planned, each with a 4-8 GHz IF passband. Up to 4 frequency bands will be available on each flight and bands may be swapped readily between flights. The local oscillators for all bands are synthesized and tuner-less, using solid state multipliers. CASIMIR also uses a novel, commercial, field-programmable gate array (FPGA) based, fast Fourier transform spectrometer, with extremely high resolution, 22000 (268 kHz at 6 GHz), yielding a system resolution > 106. CASIMIR is extremely well suited to observe the warm, ≈ 100K, interstellar medium, particularly hydrides and water lines, in both galactic and extragalactic sources. We present an overview of the instrument, its capabilities and systems. We also describe recent progress in development of the local oscillators and present our first astronomical observations obtained with the new type of spectrometer.
international conference on infrared, millimeter, and terahertz waves | 2008
Michael L. Edgar; Andrew I. Harris; Alexandre Karpov; Sean Lin; David P. Miller; Simon J. E. Radford; Frank Rice; Jonas Zmuidzinas
CASIMIR, the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver, is a far infrared and submillimeter heterodyne spectrometer under development for the Stratospheric Observatory For Infrared Astronomy, SOFIA. CASIMIR will carry out observations in the frequency range from 500 GHz up to 1.4 THz, with extremely high spectral resolution, of order 106. Capitalizing on recent advances in SIS mixer development, CASIMIR will cover this region of the spectrum with unprecedented sensitivity. CASIMIR is extremely well suited to observe the warm, ~100 K, interstellar medium, particularly water lines, in both Galactic and extragalactic sources.