Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patricia A. Seymour is active.

Publication


Featured researches published by Patricia A. Seymour.


Journal of Pharmacology and Experimental Therapeutics | 2008

Preclinical Characterization of Selective Phosphodiesterase 10A Inhibitors: A New Therapeutic Approach to the Treatment of Schizophrenia

Christopher J. Schmidt; Douglas S. Chapin; J. Cianfrogna; M. L. Corman; Mihály Hajós; John F. Harms; W. E. Hoffman; L. A. Lebel; S. A. McCarthy; Frederick R. Nelson; C. Proulx-LaFrance; Mark J. Majchrzak; A. D. Ramirez; K. Schmidt; Patricia A. Seymour; J. A. Siuciak; F. D. Tingley; R. D. Williams; Patrick Robert Verhoest; Frank S. Menniti

We have recently proposed the hypothesis that inhibition of the cyclic nucleotide phosphodiesterase (PDE) 10A may represent a new pharmacological approach to the treatment of schizophrenia (Curr Opin Invest Drug 8:54–59, 2007). PDE10A is highly expressed in the medium spiny neurons of the mammalian striatum (Brain Res 985:113–126, 2003; J Histochem Cytochem 54:1205–1213, 2006; Neuroscience 139:597–607, 2006), where the enzyme is hypothesized to regulate both cAMP and cGMP signaling cascades to impact early signal processing in the corticostriatothalamic circuit (Neuropharmacology 51:374–385, 2006; Neuropharmacology 51:386–396, 2006). Our current understanding of the physiological role of PDE10A and the therapeutic utility of PDE10A inhibitors derives in part from studies with papaverine, the only pharmacological tool for this target extensively profiled to date. However, this agent has significant limitations in this regard, namely, relatively poor potency and selectivity and a very short exposure half-life after systemic administration. In the present report, we describe the discovery of a new class of PDE10A inhibitors exemplified by TP-10 (2-{4-[-pyridin-4-yl-1-(2,2,2-trifluoro-ethyl)-1H-pyrazol-3-yl]-phenoxymethyl}-quinoline succinic acid), an agent with greatly improved potency, selectivity, and pharmaceutical properties. These new pharmacological tools enabled studies that provide further evidence that inhibition of PDE10A represents an important new target for the treatment of schizophrenia and related disorders of basal ganglia function.


Neuropharmacology | 2007

CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity

Judith A. Siuciak; Douglas S. Chapin; Sheryl A. McCarthy; Victor Guanowsky; Janice A. Brown; Phoebe Chiang; Ravi B. Marala; Terrell A. Patterson; Patricia A. Seymour; Andrew G. Swick; Philip A. Iredale

CP-809,101 is a potent, functionally selective 5-HT(2C) agonist that displays approximately 100% efficacy in vitro. The aim of the present studies was to assess the efficacy of a selective 5-HT(2C) agonist in animal models predictive of antipsychotic-like efficacy and side-effect liability. Similar to currently available antipsychotic drugs, CP-809,101 dose-dependently inhibited conditioned avoidance responding (CAR, ED(50)=4.8 mg/kg, sc). The efficacy of CP-809,101 in CAR was completely antagonized by the concurrent administration of the 5-HT(2C) receptor antagonist, SB-224,282. CP-809,101 antagonized both PCP- and d-amphetamine-induced hyperactivity with ED(50) values of 2.4 and 2.9 mg/kg (sc), respectively and also reversed an apomorphine induced-deficit in prepulse inhibition. At doses up to 56 mg/kg, CP-809,101 did not produce catalepsy. Thus, the present results demonstrate that the 5-HT(2C) agonist, CP-809,101, has a pharmacological profile similar to that of the atypical antipsychotics with low extrapyramidal symptom liability. CP-809,101 was inactive in two animal models of antidepressant-like activity, the forced swim test and learned helplessness. However, CP-809,101 was active in novel object recognition, an animal model of cognitive function. These data suggest that 5-HT(2C) agonists may be a novel approach in the treatment of psychosis as well as for the improvement of cognitive dysfunction associated with schizophrenia.


Biochemical Pharmacology | 2009

Preclinical pharmacology of the α4β2 nAChR partial agonist varenicline related to effects on reward, mood and cognition

Hans Rollema; Mihály Hajós; Patricia A. Seymour; Rouba Kozak; Mark J. Majchrzak; Victor Guanowsky; Weldon Horner; Doug S. Chapin; William E. Hoffmann; David E. Johnson; Stafford McLean; Jody Freeman; Kathryn E. Williams

The pharmacological properties and pharmacokinetic profile of the alpha4beta2 nicotinic acetylcholine receptor (nAChR) partial agonist varenicline provide an advantageous combination of free brain levels and functional potencies at the target receptor that for a large part explain its efficacy as a smoking cessation aid. Since alpha4beta2 and other nAChR subtypes play important roles in mediating central processes that control reward, mood, cognition and attention, there is interest in examining the effects of selective nAChR ligands such as varenicline in preclinical animal models that assess these behaviors. Here we describe results from studies on vareniclines effects in animal models of addiction, depression, cognition and attention and discuss these in the context of recently published preclinical and preliminary clinical studies that collected data on vareniclines effects on mood, cognition and alcohol abuse disorder. Taken together, the preclinical and the limited clinical data show beneficial effects of varenicline, but further clinical studies are needed to evaluate whether the preclinical effects observed in animal models are translatable to the clinic.


Bioorganic & Medicinal Chemistry Letters | 2001

Atropisomeric quinazolin-4-one derivatives are potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists

Willard Mckowan Welch; Frank E. Ewing; J. Huang; Frank S. Menniti; Martin J. Pagnozzi; Kristin Kelly; Patricia A. Seymour; V Guanowsky; S Guhan; M.R Guinn; D Critchett; John T. Lazzaro; Alan H. Ganong; K.M DeVries; T.L Staigers; Bertrand Leo Chenard

Piriqualone (1) was found to be an antagonist of AMPA receptors. Structure activity optimization was conducted on each of the three rings in 1 to afford a series of potent and selective antagonists. The sterically crowded environment surrounding the N-3 aryl group provided sufficient thermal stability for atropisomers to be isolated. Separation of these atropisomers resulted in the identification of (+)-38 (CP-465,022), a compound that binds to the AMPA receptor with high affinity (IC50 = 36 nM) and displays potent anticonvulsant activity.


Physiology & Behavior | 1988

The effects of continuous administration of murine interleukin-1α in the rat

Ivan G. Otterness; Patricia A. Seymour; Harry W. Golden; Jack A. Reynolds; Gaston O. Daumy

Abstract Recombinant murine IL-1α was administered continuously to rats by means of osmotic pumps implanted intraperitoneally. Continuous infusion of rIL-1α in a range between 0.12 and 12.0 μg/day for four days was found to produce concentration-dependent weight loss. Behavioral parameters were continuously monitored and recorded at the 3.0 μg/day concentration in electronically-monitored activity cages during Days 2 through 5 of rIL-1α administration. Parameters were separated into those affected during the dark phase (active period) or the light phase (resting period). Eating activity was found to be significantly reduced during each dark period through day 5, when compared with either untreated or PBS vehicle-infused animals. During the fourth and fifth days of infusion, however, eating behavior in animals infused with rIL-1α began to increase toward control level in the latter, but not the earlier, half of the dark period. In contrast, drinking behavior was found to be significantly elevated only during the light periods. Continuous infusion of rIL-1α also produced significant reductions in both horizontal locomotor activity (crossovers) and vertical locomotor activity (rears). However, in contrast to the trend toward a return of normal eating behavior, locomotor activity remained decreased through the fifth day of rIL-1α infusion. These results suggest changes that could be produced by 1L-1 in chronic inflammatory disease and infection.


European Journal of Pharmacology | 2009

Varenicline has antidepressant-like activity in the forced swim test and augments sertraline's effect.

Hans Rollema; Victor Guanowsky; Yann S. Mineur; Alka Shrikhande; Jotham Wadsworth Coe; Patricia A. Seymour; Marina R. Picciotto

Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist developed as a smoking cessation aid, showed antidepressant-like activity in the forced swim test in two mouse strains. In addition, a low varenicline dose significantly enhanced the effects of moderately active doses of the selective serotonin reuptake inhibitor sertraline. These findings are consistent with the notion that reducing alpha4beta2 nicotinic acetylcholine receptor activity either by antagonists or by partial agonists that can partially activate or desensitize acetylcholine receptors is associated with antidepressant-like properties. These data suggest that varenicline may have antidepressant potential and can, when combined, augment antidepressant responses of selective serotonin reuptake inhibitors.


Current Topics in Medicinal Chemistry | 2002

Tau Protein Phosphorylation as a Therapeutic Target in Alzheimers Disease

Lit-Fui Lau; Joel B. Schachter; Patricia A. Seymour; Mark A. Sanner

Neurofibrillary tangles (NFTs) are a distinguishing neuropathological feature found in postmortem brains of Alzheimer s disease (AD) and tauopathy patients. The density of these lesions correlates with severity of AD and their distribution follows a characteristic pattern of expansion as the disease progresses. The principle components of NFTs are highly phosphorylated forms of the microtubule-associated protein, tau. Tau phosphorylation is believed to initiate or facilitate dissociation from microtubules leading to microtubule destabilization, decay of cellular transport properties, and cell death. This review summarizes recent data and prevailing views on the roles of protein kinases and phosphatases in the regulation of tau phosphorylation in vitro and in vivo, taking into account data from human neurodegenerative diseases and from transgenic rodent models. Small molecule inhibitors of tau phosphorylation that serve as important research tools and possibly the basis of potential new therapeutics, are also described. Key challenges in developing effective therapeutic agents include identification of the relevant kinase(s) responsible for aberrant tau phosphorylation in AD, synthesis of inhibitors selectively targeting those kinases and establishment of appropriate animal models.


Journal of Molecular Neuroscience | 2002

Cdk5 as a drug target for the treatment of Alzheimer's disease.

Lit-Fui Lau; Patricia A. Seymour; Mark A. Sanner; Joel B. Schachter

Cyclin-dependent kinase-5 (cdk5) is suggested to play a role in tau phosphorylation and contribute to the pathogenesis of Alzheimer’s disease (AD). One of its activators, p25, is dramatically increased in AD brains where p25 and cdk5 are colocalized with neurofibrillary tangles. Several animal models have shown a correlation of p25/cdk5 activities with tau phosphorylation. Overexpression of p25/cdk5 in nueronal cultures not only leads to tau phosphorylation but also cytoskeletal abnormalities and neurodegeneration. Therefore, cdk5 kinase inhibitors are potential therapeutic agents for the treatment of AD. Availability of potent, selective, brain permeable cdk5 inhibitors and relevant animal models in which their efficacy can be treated will be critical in the development of these inhibitors.


The Journal of Neuroscience | 2014

Reduction of Brain Kynurenic Acid Improves Cognitive Function

Rouba Kozak; Brian M. Campbell; Christine A. Strick; Weldon Horner; William E. Hoffmann; Tamás Kiss; Douglas S. Chapin; Dina McGinnis; Amanda L. Abbott; Brooke M. Roberts; Kari R. Fonseca; Victor Guanowsky; Damon Young; Patricia A. Seymour; Amy B. Dounay; Mihály Hajós; Graham V. Williams; Stacy A. Castner

The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.


Journal of Pharmacology and Experimental Therapeutics | 2012

Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

Robin J. Kleiman; Douglas S. Chapin; Curt Christoffersen; Jody Freeman; Kari R. Fonseca; Kieran F. Geoghegan; Sarah Grimwood; Victor Guanowsky; Mihály Hajós; John F. Harms; Christopher John Helal; William E. Hoffmann; Geralyn P. Kocan; Mark J. Majchrzak; Dina McGinnis; Stafford McLean; Frank S. Menniti; Fredrick R. Nelson; Robin Roof; Anne W. Schmidt; Patricia A. Seymour; Diane Stephenson; Francis David Tingley; Michelle Vanase-Frawley; Patrick Robert Verhoest; Christopher J. Schmidt

Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.

Collaboration


Dive into the Patricia A. Seymour's collaboration.

Researchain Logo
Decentralizing Knowledge