Frank Stodolsky
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Stodolsky.
International conference on beam processing of advanced materials, Cleveland, OH (United States), 30 Oct - 2 Nov 1995 | 1995
Frank Stodolsky; Anant Vyas; Roy Cuenca; Linda Gaines
The life-cycle energy and fuel-use impacts of US-produced aluminum-intensive passenger cars and passenger trucks are assessed. The energy analysis includes vehicle fuel consumption, material production energy, and recycling energy. A model that stimulates market dynamics was used to project aluminum-intensive vehicle market shares and national energy savings potential for the period between 2005 and 2030. We conclude that there is a net energy savings with the use of aluminum-intensive vehicles. Manufacturing costs must be reduced to achieve significant market penetration of aluminum-intensive vehicles. The petroleum energy saved from improved fuel efficiency offsets the additional energy needed to manufacture aluminum compared to steel. The energy needed to make aluminum can be reduced further if wrought aluminum is recycled back to wrought aluminum. We find that oil use is displaced by additional use of natural gas and nonfossil energy, but use of coal is lower. Many of the results are not necessarily applicable to vehicles built outside of the United States, but others could be used with caution.
SAE transactions | 2000
Feng An; Frank Stodolsky; Anant Vyas; Roy Cuenca; James J. Eberhardt
The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and
2. Argonne National Laboratory technical women`s symposium, Argonne, IL (United States), 29-30 Apr 1996 | 1996
L. Gaines; R. Cuenca; S. Wu; Frank Stodolsky
3,000 in 2020, while for a Class 6-7 truck, it is about
Transportation Research Record | 2003
Chris Saricks; Anant Vyas; Frank Stodolsky; John D. Maples
7,100 in 2005 and
Energy Policy | 1999
Arvind P. S. Teotia; Anant Vyas; Rolando Cuenca; Frank Stodolsky; James J. Eberhardt
3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.
SAE transactions | 1995
Feng An; Frank Stodolsky
The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.
SAE transactions | 1997
Linda Gaines; Frank Stodolsky
The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration’s long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology’s potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.
1989 Conference and Exposition on Future Transportation Technology | 1989
Frank Stodolsky
Abstract With the popularity of light trucks increasing in the United States, their share of the US light vehicle market had doubled between 1980 and 1996, climbing from 20 to 40%. By 1996, annual energy consumption for light trucks had risen to 5.97×1015 Btu [5.97 quadrillion Btu, or “quad,” or 6.30×1018 joule (J)], compared to 7.94 quad (8.38×1018 J) for cars. In recent years (since 1995), the fuel economy of US - manufactured light trucks (almost 99% of which use gasoline engines) has been below the Corporate Average Fuel Economy (CAFE) standards. This paper analyzes a strategy to reduce the CAFE shortfalls by adopting the new, highly energy-efficient clean diesel engine. Research on such engines has been funded by the US Department of Energy, Office of Heavy Vehicle Technologies, under its Light Truck Clean Diesel Engine Program. A clean diesel engine market penetration trajectory is developed, representing an industry response to meet the CAFE standards. Whether the engine will be produced inside the country or imported remains uncertain, so two cases are defined. Values of exports/imports of clean diesel engines/trucks under these cases are estimated. The macroeconomic benefits are estimated by using a model of the US economy developed by Standard & Poors Data Resources, Inc. On the basis of gains in the gross domestic product projected under the alternative cases, domestic production of the clean diesel engine is favored over importing it.
Transportation Research Record | 2000
Marianne Mintz; Anant Vyas; Michael Wang; Frank Stodolsky; Roy Cuenca; Linda Gaines
In this paper, an analytical model is developed to estimate the impact of reducing engine assembly mass (the term engine assembly refers to the moving components of the engine system, including crankshafts, valve train, pistons, and connecting rods) on engine friction and vehicle fuel economy. The relative changes in frictional mean effective pressure and fuel economy are proportional to the relative change in assembly mass. These changes increase rapidly as engine speed increases. Based on the model, a 25% reduction in engine assembly mass results in a 2% fuel economy improvement for a typical mid-size passenger car over the EPA Urban and Highway Driving Cycles.
Transportation Research Record | 2000
Christopher L. Saricks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt
There has been a recent trend toward the use of lifecycle analysis (LCA) as a decision-making tool for the automotive industry. However, the different practitioners` methods and assumptions vary widely, as do the interpretations put on the results. The lack of uniformity has been addressed by such groups as the Society of Environmental Toxicology and Chemistry (SETAC) and the International Organization for Standardization (ISO), but standardization of methodology assures neither meaningful results nor appropriate use of the results. This paper examines the types of analysis that are possible for automobiles, explains possible pitfalls to be avoided, and suggests ways that LCA can be used as part of a rational decision-making procedure. The key to performing a useful analysis is identification of the factors that will actually be used in making the decision. It makes no sense to analyze system energy use in detail if direct financial cost is to be the decision criterion. Criteria may depend on who is making the decision (consumer, producer, regulator). LCA can be used to track system performance for a variety of criteria, including emissions, energy use, and monetary costs, and these can have spatial and temporal distributions. Because optimization of one parameter is likely to worsen another, identification of trade-offs is an important function of LCA.