Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frank W. Avila is active.

Publication


Featured researches published by Frank W. Avila.


Annual Review of Entomology | 2011

Insect seminal fluid proteins: identification and function.

Frank W. Avila; Laura K. Sirot; Brooke A. LaFlamme; C. Dustin Rubinstein; Mariana F. Wolfner

Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral postmating changes in females. These changes include decreasing receptivity to remating; affecting sperm storage parameters; increasing egg production; and modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have antimicrobial functions and induce expression of antimicrobial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the postmating processes of female insects.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Acp36DE is required for uterine conformational changes in mated Drosophila females

Frank W. Avila; Mariana F. Wolfner

In a multitude of animals with internal fertilization, including insects and mammals, sperm are stored within a females reproductive tract after mating. Defects in the process of sperm storage drastically reduce reproductive success. In Drosophila males, “Acp” seminal proteins alter female postmating physiology and behavior, and are necessary for several aspects of sperm storage. For example, Acps cause a series of conformational changes in the mated females reproductive tract that occur during and immediately after mating. These conformational changes have been hypothesized to aid both in the movement of sperm within the female and in the subsequent storage of those sperm. We used RNAi to systematically knock down several Acps involved in sperm storage to determine whether they played a role in the mating-induced uterine conformational changes. Mates of males lacking the glycoprotein Acp36DE, which is needed for the accumulation of sperm in the storage organs, fail to complete the full sequence of the conformational changes. Our results show that uterine conformational changes are important for proper accumulation of sperm in storage and identify a seminal protein that mediates these changes. Four Acps included in this study, previously shown to affect sperm release from storage (CG9997, CG1656, CG1652, and CG17575), are not necessary for uterine conformational changes to occur. Rather, consistent with their role in later steps of sperm storage, we show here that their presence can affect the outcome of sperm competition situations.


Genetics | 2010

Sex Peptide is Required for the Efficient Release of Stored Sperm in Mated Drosophila Females

Frank W. Avila; K. Ravi Ram; Margaret C. Bloch Qazi; Mariana F. Wolfner

The Drosophila seminal fluid protein (SFP) sex peptide (SP) elicits numerous post-mating responses, including increased egg laying and decreased sexual receptivity, in the mated female. Unlike other SFPs, which are detectable in mated females for only a few hours post mating, SP is maintained—and its effects are sustained—for several days. The persistence of SP in the mated females reproductive tract is thought to be a consequence of its binding to, and gradual release from, sperm in storage, which maintains SPs ability to act within the female reproductive tract. Recent studies have shown that several other SFPs, acting in a network, are needed for SPs localization to sperm and are necessary for the efficient release of sperm from storage. This result suggested an additional new role for SP modulating the release of sperm from storage. We tested for this possibility by examining sperm storage parameters in mated females that did not receive SP. We found that while sperm accumulation into storage was unaffected, sperm depletion from storage sites was significantly decreased (or impaired) in the absence of SP. Mates of males expressing a modified SP that is unable to be released from sperm showed a similar phenotype, indicating that release of sperm-bound SP is a necessary component of normal sperm depletion. Additionally, SP null males were more successful in a sperm competitive environment when they were first to mate, which is likely a consequence of higher retention of their sperm due to defective sperm release. Our findings illustrate a direct role for SP in the release of sperm from storage.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning

Alexandra L. Mattei; Mark L. Riccio; Frank W. Avila; Mariana F. Wolfner

Significance Our high-resolution, multiscale micro-computed tomography scans of Drosophila provide the first 3D view, to our knowledge, of the in situ morphological changes that occur in a female insect’s reproductive tract (RT) during and after mating. By means of this holistic analysis, we determined how the postmating reproductive events of ovulation, egg movement, sperm storage, sperm release, and fertilization are coordinated. We observed and quantified phenomena not detected in prior studies of dissected materials. These phenomena included coordinated looping and unlooping of the uterus and oviducts, and a potential mating-induced trauma in the female RT. This new perspective allowed us to revisit experimentally, and newly define, the effects of male- and female-secreted molecules on female postmating physiology. Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female’s circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female’s reproductive physiology.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A requirement for the neuromodulators octopamine and tyramine in Drosophila melanogaster female sperm storage

Frank W. Avila; Margaret C. Bloch Qazi; C. Dustin Rubinstein; Mariana F. Wolfner

Female sperm storage is common among organisms with internal fertilization. It is important for extended fertility and, in cases of multiple mating, for sperm competition. The physiological mechanisms by which females store and manage stored sperm are poorly understood. Here, we report that the biogenic amines tyramine (TA) and octopamine (OA) in Drosophila melanogaster females play essential roles in sperm storage. D. melanogaster females store sperm in two types of organs, a single seminal receptacle and a pair of spermathecae. We examined sperm storage parameters in females mutant in enzymes required for the biochemical synthesis of tyrosine to TA and TA to OA, respectively. Postmating uterine conformational changes, which are associated with sperm entry and accumulation into storage, were unaffected by the absence of either TA or OA. However, sperm release from storage requires both TA and OA; sperm were retained in storage in both types of mutant females at significantly higher levels than in control flies. Absence of OA inhibited sperm depletion only from the seminal receptacle, whereas absence of both OA and TA perturbed sperm depletion from both storage organ types. We find innervation of the seminal receptacle and spermathecae by octopaminergic-tyraminergic neurons. These findings identify a distinct role for TA and OA in reproduction, regulating the release of sperm from storage, and suggest a mechanism by which Drosophila females actively regulate the release of stored sperm.


Genetics | 2014

A Drosophila Protease Cascade Member, Seminal Metalloprotease-1, Is Activated Stepwise by Male Factors and Requires Female Factors for Full Activity

Brooke A. LaFlamme; Frank W. Avila; Kevin Michalski; Mariana F. Wolfner

Females and males of sexually reproducing animals must cooperate at the molecular and cellular level for fertilization to succeed, even though some aspects of reproductive molecular biology appear to involve antagonistic interactions. We previously reported the existence of a proteolytic cascade in Drosophila melanogaster seminal fluid that is initiated in the male and ends in the female. This proteolytic cascade, which processes at least two seminal fluid proteins (Sfps), is a useful model for understanding the regulation of Sfp activities, including proteolysis cascades in mammals. Here, we investigated the activation mechanism of the downstream protease in the cascade, the astacin-family metalloprotease Seminal metalloprotease-1 (Semp1, CG11864), focusing on the relative contribution of the male and female to its activation. We identified a naturally occurring semp1 null mutation within the Drosophila Genetic Reference Panel. By expressing mutant forms of Semp1 in males homozygous for the null mutation, we discovered that cleavage is required for the complete activation of Semp1, and we defined at least two sites that are essential for this activational cleavage. These amino acid residues suggest a two-step mechanism for Semp1 activation, involving the action of at least two male-derived proteases. Although the cascade’s substrates potentially influence both fertility and sperm competition within the mated female, the role of female factors in the activation or activity of Semp1 is unknown. We show here that Semp1 can undergo its activational cleavage in male ejaculates, without female contributions, but that cleavage of Semp1’s substrates does not proceed to completion in ejaculates, indicating an essential role for female factors in Semp1’s full activity. In addition, we find that expression of Semp1 in virgin females demonstrates that females can activate this protease on their own, resulting in activity that is complete but substantially delayed.


PLOS ONE | 2015

Induction of excessive endoplasmic reticulum stress in the Drosophila male accessory gland results in infertility.

Clement Y. Chow; Frank W. Avila; Andrew G. Clark; Mariana F. Wolfner

Endoplasmic reticulum (ER) stress occurs when misfolded proteins accumulate in the lumen of the ER. A cell responds to ER stress with the unfolded protein response (UPR), a complex program of transcriptional and translational changes aimed at clearing misfolded proteins. Secretory tissues and cells are particularly well adapted to respond to ER stress because their function requires high protein production and secretory load. The insect male accessory gland (AG) is a secretory tissue involved in male fertility. The AG secretes many seminal fluid proteins (SFPs) essential for male reproduction. Among adult Drosophila tissues, we find that genes upregulated by ER stress are most highly expressed in the AG, suggesting that the AG is already undergoing high levels of ER stress due to its normal secretory functions. We hypothesized that induction of excessive ER stress in the AG above basal levels, would perturb normal function and provide a genetic tool for studying AG and SFP biology. To test this, we genetically induced excessive ER stress in the AG by conditional 1) expression of a misfolded protein or 2) knockdown of the UPR regulatory protein, BiP. Both genetic manipulations induced excessive ER stress in the AG, as indicated by the increase in Xbp1 splicing, a marker of ER stress. Both models resulted in a large decrease in or loss of SFP production and male infertility. Sperm production, motility, and transfer appeared unaffected. The induction of strong ER stress in the insect male AG may provide a simple way for studying or manipulating male fertility, as it eliminates AG function while preserving sperm production.


Journal of Insect Physiology | 2015

Sex peptide receptor is required for the release of stored sperm by mated Drosophila melanogaster females.

Frank W. Avila; Alexandra L. Mattei; Mariana F. Wolfner

The storage of sperm in mated females is important for efficient reproduction. After sperm are transferred to females during mating, they need to reach and enter into the site(s) of storage, be maintained viably within storage, and ultimately be released from storage to fertilize eggs. Perturbation of these events can have drastic consequences on fertility. In Drosophila melanogaster, females store sperm for up to 2 weeks after a single mating. For sperm to be released normally from storage, Drosophila females need to receive the seminal fluid protein (SFP) sex peptide (SP) during mating. SP, which binds to sperm in storage, signals through the sex peptide receptor (SPR) to elicit two other effects on mated females: the persistence of egg laying and a reduction in sexual receptivity. However, it is not known whether SPR is also needed to mediate SPs effect on sperm release. By phenotypic analysis of flies deleted for SPR, and of flies knocked down for SPR, ubiquitously or in specific tissues, we show that SPR is required to mediate SPs effects on sperm release from storage. We show that SPR expression in ppk(+) neurons is needed for proper sperm release; these neurons include those that mediate SPs effect on receptivity and egg laying. However, we find that SPR is also needed in the spermathecal secretory cells of the female reproductive tract for efficient sperm release. Thus, SPR expression is necessary in both the nervous system and in female reproductive tract cells to mediate the release of stored sperm.


Genetics | 2015

Retention of Ejaculate by Drosophila melanogaster Females Requires the Male-Derived Mating Plug Protein PEBme

Frank W. Avila; Allie B. Cohen; Fatima S. Ameerudeen; David Duneau; Shruthi Suresh; Alexandra L. Mattei; Mariana F. Wolfner

Within the mated reproductive tracts of females of many taxa, seminal fluid proteins (SFPs) coagulate into a structure known as the mating plug (MP). MPs have diverse roles, including preventing female remating, altering female receptivity postmating, and being necessary for mated females to successfully store sperm. The Drosophila melanogaster MP, which is maintained in the mated female for several hours postmating, is comprised of a posterior MP (PMP) that forms quickly after mating begins and an anterior MP (AMP) that forms later. The PMP is composed of seminal proteins from the ejaculatory bulb (EB) of the male reproductive tract. To examine the role of the PMP protein PEBme in D. melanogaster reproduction, we identified an EB GAL4 driver and used it to target PEBme for RNA interference (RNAi) knockdown. PEBme knockdown in males compromised PMP coagulation in their mates and resulted in a significant reduction in female fertility, adversely affecting postmating uterine conformation, sperm storage, mating refractoriness, egg laying, and progeny generation. These defects resulted from the inability of females to retain the ejaculate in their reproductive tracts after mating. The uncoagulated MP impaired uncoupling by the knockdown male, and when he ultimately uncoupled, the ejaculate was often pulled out of the female. Thus, PEBme and MP coagulation are required for optimal fertility in D. melanogaster. Given the importance of the PMP for fertility, we identified additional MP proteins by mass spectrometry and found fertility functions for two of them. Our results highlight the importance of the MP and the proteins that comprise it in reproduction and suggest that in Drosophila the PMP is required to retain the ejaculate within the female reproductive tract, ensuring the storage of sperm by mated females.


PLOS Neglected Tropical Diseases | 2016

Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti.

Catalina Alfonso-Parra; Yasir H. Ahmed-Braimah; Ethan C. Degner; Frank W. Avila; Susan M. Villarreal; Jeffrey A. Pleiss; Mariana F. Wolfner; Laura C. Harrington

The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6hpm and 24hpm, while 130 transcripts were down-regulated at 6hpm and 24hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, “priming” her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito.

Collaboration


Dive into the Frank W. Avila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge