Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clement Y. Chow is active.

Publication


Featured researches published by Clement Y. Chow.


Nature | 2007

Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J

Clement Y. Chow; Yanling Zhang; James J. Dowling; Natsuko Jin; Maja Adamska; Kensuke Shiga; Kinga Szigeti; Michael E. Shy; Jun Li; Xuebao Zhang; James R. Lupski; Lois S. Weisman; Miriam H. Meisler

Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells. Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome–lysosome axis in yeast. Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the ‘pale tremor’ mouse. Positional cloning identified insertion of ETn2β (early transposon 2β) into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC (suppressor of actin) domain PtdIns(3,5)P2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns(3,5)P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome–lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot–Marie–Tooth disorder is designated CMT4J.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice

Yanling Zhang; Sergey N. Zolov; Clement Y. Chow; Shalom G. Slutsky; Simon C. W. Richardson; Robert C. Piper; Baoli Yang; Johnathan J. Nau; Randal J. Westrick; Sean J. Morrison; Miriam H. Meisler; Lois S. Weisman

The signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), likely functions in multiple signaling pathways. Here, we report the characterization of a mouse mutant lacking Vac14, a regulator of PI(3,5)P2 synthesis. The mutant mice exhibit massive neurodegeneration, particularly in the midbrain and in peripheral sensory neurons. Cell bodies of affected neurons are vacuolated, and apparently empty spaces are present in areas where neurons should be present. Similar vacuoles are found in cultured neurons and fibroblasts. Selective membrane trafficking pathways, especially endosome-to-TGN retrograde trafficking, are defective. This report, along with a recent report on a mouse with a null mutation in Fig4, presents the unexpected finding that the housekeeping lipid, PI(3,5)P2, is critical for the survival of neural cells.


The EMBO Journal | 2008

VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse

Natsuko Jin; Clement Y. Chow; Li Liu; Sergey N. Zolov; Roderick T. Bronson; Muriel T. Davisson; Jason L Petersen; Yanling Zhang; Sujin Park; Jason E. Duex; Dan Goldowitz; Miriam H. Meisler; Lois S. Weisman

The signalling lipid PI(3,5)P2 is generated on endosomes and regulates retrograde traffic to the trans‐Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P2 levels. Mutations that lower PI(3,5)P2 cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P2 was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P2 regulatory complex by direct contact with the known regulators of PI(3,5)P2: Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P2 regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P2. Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.


Brain | 2008

Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration

Xuebao Zhang; Clement Y. Chow; Zarife Sahenk; Michael E. Shy; Miriam H. Meisler; Jun Li

Recessive Charcot-Marie-Tooth disease type-4J (CMT4J) and its animal model, the pale tremor mouse (plt), are caused by mutations of the FIG4 gene encoding a PI(3,5)P(2) 5-phosphatase. We describe the 9-year clinical course of CMT4J, including asymmetric, rapidly progressive paralysis, in two siblings. Sensory symptoms were absent despite reduced numbers of sensory axons. Thus, the phenotypic presentation of CMT4J clinically resembles motor neuron disease. Time-lapse imaging of fibroblasts from CMT4J patients demonstrates impaired trafficking of intracellular organelles because of obstruction by vacuoles. Further characterization of plt mice identified axonal degeneration in motor and sensory neurons, limited segmental demyelination, lack of TUNEL staining and lack of accumulation of ubiquitinated protein in vacuoles of motor and sensory neurons. This study represents the first documentation of the natural history of CMT4J. Physical obstruction of organelle trafficking by vacuoles is a potential novel cellular mechanism of neurodegeneration.


PLOS Genetics | 2011

Pathogenic Mechanism of the FIG4 Mutation Responsible for Charcot-Marie-Tooth Disease CMT4J

Guy M. Lenk; Cole J. Ferguson; Clement Y. Chow; Natsuko Jin; Julie M. Jones; Adrienne E. Grant; Sergey N. Zolov; Jesse J. Winters; Roman J. Giger; James J. Dowling; Lois S. Weisman; Miriam H. Meisler

CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5× higher than endogenous Fig4 completely rescued lethality, whereas 2× expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.


Genes, Brain and Behavior | 2008

Exaggerated emotional behavior in mice heterozygous null for the sodium channel Scn8a (Nav1.6)

Brandon C. McKinney; Clement Y. Chow; Miriam H. Meisler; Geoffrey G. Murphy

The Scn8a gene encodes the α‐subunit of Nav1.6, a neuronal voltage‐gated sodium channel. Mice homozygous for mutations in the Scn8a gene exhibit motor impairments. Recently, we described a human family with a heterozygous protein truncation mutation in SCN8A. Rather than motor impairment, neuropsychological abnormalities were more common, suggesting a role for Scn8a in a more diverse range of behaviors. Here, we characterize mice heterozygous for a null mutation of Scn8a (Scn8a+/−mice) in a number of behavioral paradigms. We show that Scn8a+/−mice exhibit greater conditioned freezing in the Pavlovian fear conditioning paradigm but no apparent abnormalities in other learning and memory paradigms including the Morris water maze and conditioned taste avoidance paradigm. Furthermore, we find that Scn8a+/−mice exhibit more pronounced avoidance of well‐lit, open environments as well as more stress‐induced coping behavior. Together, these data suggest that Scn8a plays a critical role in emotional behavior in mice. Although the behavioral phenotype observed in the Scn8a+/−mice only partially models the abnormalities in the human family, we anticipate that the Scn8a+/−mice will serve as a valuable tool for understanding the biological basis of emotion and the human diseases in which abnormal emotional behavior is a primary component.


Genetics | 2010

The Genetic Basis for Male × Female Interactions Underlying Variation in Reproductive Phenotypes of Drosophila

Clement Y. Chow; Mariana F. Wolfner; Andrew G. Clark

In Drosophila, where females mate multiply, sperm competition contributes strongly to fitness variability among males. Males transfer “Acp” seminal proteins to females during mating, and these proteins influence the outcome of sperm competition. Because Acps function within the female, male proteins can directly interact with female molecules in a manner that affects reproductive fitness. Here we begin to dissect the genetic architecture of male × female interactions underlying reproductive phenotypes important to sperm competition. By utilizing chromosome extraction lines, we demonstrate that the third and X chromosomes each have large effects on fertility phenotypes, female remating rate, and the sperm competition parameter, P1. Strikingly, the third and X chromosomes harbor genetic variation that gives rise to strong male × female interactions that modulate female remating rate and P1. Encoded on these chromosomes are, respectively, sex peptide (SP) and sex peptide receptor (SPR), the only pair of physically interacting male Acp and female receptor known. We identified several intriguing allelic interactions between SP and SPR. The results of this study begin to elucidate the complex genetic architecture of reproductive and sperm competition phenotypes and have significant implications for the evolution of male and female characters.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes

Clement Y. Chow; Mariana F. Wolfner; Andrew G. Clark

Natural genetic variation is a rich resource for identifying novel elements of cellular pathways such as endoplasmic reticulum (ER) stress. ER stress occurs when misfolded proteins accumulate in the ER and cells respond with the conserved unfolded protein response (UPR), which includes large-scale gene expression changes. Although ER stress can be a cause or a modifying factor of human disease, little is known of the amount of variation in the response to ER stress and the genes contributing to such variation. To study natural variation in ER stress response in a model system, we measured the survival time in response to tunicamycin-induced ER stress in flies from 114 lines from the sequenced Drosophila Genetic Reference Panel of wild-derived inbred strains. These lines showed high heterogeneity in survival time under ER stress conditions. To identify the genes that may be driving this phenotypic variation, we profiled ER stress-induced gene expression and performed an association study. Microarray analysis identified variation in transcript levels of numerous known and previously unknown ER stress-responsive genes. Survival time was significantly associated with polymorphisms in candidate genes with known (i.e., Xbp1) and unknown roles in ER stress. Functional testing found that 17 of 25 tested candidate genes from the association study have putative roles in ER stress. In both approaches, one-third of ER stress genes had human orthologs that contribute to human disease. This study establishes Drosophila as a useful model for studying variation in ER stress and identifying ER stress genes that may contribute to human disease.


Genetics | 2013

Large neurological component to genetic differences underlying biased sperm use in Drosophila.

Clement Y. Chow; Mariana F. Wolfner; Andrew G. Clark

Sperm competition arises as a result of complex interactions among male and female factors. While the roles of some male factors are known, little is known of the molecules or mechanisms that underlie the female contribution to sperm competition. The genetic tools available for Drosophila allow us to identify, in an unbiased manner, candidate female genes that are critical for mediating sperm competition outcomes. We first screened for differences in female sperm storage and use patterns by characterizing the natural variation in sperm competition in a set of 39 lines from the sequenced Drosophila Genetic Reference Panel (DGRP) of wild-derived inbred lines. We found extensive female variation in sperm competition outcomes. To generate a list of candidate female genes for functional studies, we performed a genome-wide association mapping, utilizing the common single-nucleotide polymorphisms (SNPs) segregating in the DGRP lines. Surprisingly, SNPs within ion channel genes and other genes with roles in the nervous system were among the top associated SNPs. Knockdown studies of three candidate genes (para, Rab2, and Rim) in sensory neurons innervating the female reproductive tract indicate that some of these candidate female genes may affect sperm competition by modulating the neural input of these sensory neurons to the female reproductive tract. More extensive functional studies are needed to elucidate the exact role of all these candidate female genes in sperm competition. Nevertheless, the female nervous system appears to have a previously unappreciated role in sperm competition. Our results indicate that the study of female control of sperm competition should not be limited to female reproductive tract-specific genes, but should focus also on diverse biological pathways.


Human Molecular Genetics | 2016

Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila

Clement Y. Chow; Keegan J. P. Kelsey; Mariana F. Wolfner; Andrew G. Clark

Individuals carrying the same pathogenic mutation can present with a broad range of disease outcomes. While some of this variation arises from environmental factors, it is increasingly recognized that the background genetic variation of each individual can have a profound effect on the expressivity of a pathogenic mutation. In order to understand this background effect on disease-causing mutations, studies need to be performed across a wide range of backgrounds. Recent advancements in model organism biology allow us to test mutations across genetically diverse backgrounds and identify the genes that influence the expressivity of a mutation. In this study, we used the Drosophila Genetic Reference Panel, a collection of ∼200 wild-derived strains, to test the variability of the retinal phenotype of the Rh1(G69D) Drosophila model of retinitis pigmentosa (RP). We found that the Rh1(G69D) retinal phenotype is quite a variable quantitative phenotype. To identify the genes driving this extensive phenotypic variation, we performed a genome-wide association study. We identified 106 candidate genes, including 14 high-priority candidates. Functional testing by RNAi indicates that 10/13 top candidates tested influence the expressivity of Rh1(G69D). The human orthologs of the candidate genes have not previously been implicated as RP modifiers and their functions are diverse, including roles in endoplasmic reticulum stress, apoptosis and retinal degeneration and development. This study demonstrates the utility of studying a pathogenic mutation across a wide range of genetic backgrounds. These candidate modifiers provide new avenues of inquiry that may reveal new RP disease mechanisms and therapies.

Collaboration


Dive into the Clement Y. Chow's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natsuko Jin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy M. Lenk

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge