Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franz A. Zimmermann is active.

Publication


Featured researches published by Franz A. Zimmermann.


Clinical Cancer Research | 2008

Loss of Complex I due to Mitochondrial DNA Mutations in Renal Oncocytoma

Johannes A. Mayr; David Meierhofer; Franz A. Zimmermann; René G. Feichtinger; Christian Kögler; Manfred Ratschek; Nikolaus Schmeller; Wolfgang Sperl; Barbara Kofler

Purpose: Many solid tumors exhibit abnormal aerobic metabolism characterized by increased glycolytic capacity and decreased cellular respiration. Recently, mutations in the nuclear encoded mitochondrial enzymes fumarate hydratase and succinate dehydrogenase have been identified in certain tumor types, thus demonstrating a direct link between mitochondrial energy metabolism and tumorigenesis. Although mutations in the mitochondrial genome (mitochondrial DNA, mtDNA) also can affect aerobic metabolism and mtDNA alterations are frequently observed in tumor cells, evidence linking respiratory chain deficiency in a specific tumor type to a specific mtDNA mutation has been lacking. Experimental Design: To identify mitochondrial alterations in oncocytomas, we investigated the activities of respiratory chain enzymes and sequenced mtDNA in 15 renal oncocytoma tissues. Results: Here, we show that loss of respiratory chain complex I (NADH/ubiquinone oxidoreductase) is associated with renal oncocytoma. Enzymatic activity of complex I was undetectable or greatly reduced in the tumor samples (n = 15). Blue Native gel electrophoresis of the multisubunit enzyme complex revealed a lack of assembled complex I. Mutation analysis of the mtDNA showed frame-shift mutations in the genes of either subunit ND1, ND4, or ND5 of complex I in 9 of the 15 tumors. Conclusion: Our data indicate that isolated loss of complex I is a specific feature of renal oncocytoma and that this deficiency is frequently caused by somatic mtDNA mutations.


American Journal of Human Genetics | 2012

Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome.

Johannes A. Mayr; Tobias B. Haack; Elisabeth Graf; Franz A. Zimmermann; Thomas Wieland; Birgit Haberberger; Andrea Superti-Furga; Janbernd Kirschner; Beat Steinmann; Matthias R. Baumgartner; Isabella Moroni; Eleonora Lamantea; Massimo Zeviani; Richard J. Rodenburg; Jan A.M. Smeitink; Tim M. Strom; Thomas Meitinger; Wolfgang Sperl; Holger Prokisch

Exome sequencing of an individual with congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis, all typical symptoms of Sengers syndrome, discovered two nonsense mutations in the gene encoding mitochondrial acylglycerol kinase (AGK). Mutation screening of AGK in further individuals with congenital cataracts and cardiomyopathy identified numerous loss-of-function mutations in an additional eight families, confirming the causal nature of AGK deficiency in Sengers syndrome. The loss of AGK led to a decrease of the adenine nucleotide translocator in the inner mitochondrial membrane in muscle, consistent with a role of AGK in driving the assembly of the translocator as a result of its effects on phospholipid metabolism in mitochondria.


Human Molecular Genetics | 2010

Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 ε subunit

Johannes A. Mayr; Vendula Havlíčková; Franz A. Zimmermann; Iris Magler; Vilma Kaplanová; Pavel Ješina; Alena Pecinová; Hana Nůsková; Johannes Koch; Wolfgang Sperl; Josef Houštěk

F1Fo-ATP synthase is a key enzyme of mitochondrial energy provision producing most of cellular ATP. So far, mitochondrial diseases caused by isolated disorders of the ATP synthase have been shown to result from mutations in mtDNA genes for the subunits ATP6 and ATP8 or in nuclear genes encoding the biogenesis factors TMEM70 and ATPAF2. Here, we describe a patient with a homozygous p.Tyr12Cys mutation in the epsilon subunit encoded by the nuclear gene ATP5E. The 22-year-old woman presented with neonatal onset, lactic acidosis, 3-methylglutaconic aciduria, mild mental retardation and developed peripheral neuropathy. Patient fibroblasts showed 60-70% decrease in both oligomycin-sensitive ATPase activity and mitochondrial ATP synthesis. The mitochondrial content of the ATP synthase complex was equally reduced, but its size was normal and it contained the mutated epsilon subunit. A similar reduction was found in all investigated F1 and Fo subunits with the exception of Fo subunit c, which was found to accumulate in a detergent-insoluble form. This is the first case of a mitochondrial disease due to a mutation in a nuclear encoded structural subunit of the ATP synthase. Our results indicate an essential role of the epsilon subunit in the biosynthesis and assembly of the F1 part of the ATP synthase. Furthermore, the epsilon subunit seems to be involved in the incorporation of subunit c to the rotor structure of the mammalian enzyme.


American Journal of Human Genetics | 2011

Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

Johannes A. Mayr; Franz A. Zimmermann; Christine Fauth; Christa Bergheim; David Meierhofer; Doris Radmayr; Johannes Zschocke; Johannes Koch; Wolfgang Sperl

Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins.


BMC Medical Genetics | 2009

Mitochondrial DNA haplogroup T is associated with coronary artery disease and diabetic retinopathy: a case control study

Barbara Kofler; Edith E. Mueller; Waltraud Eder; Olaf Stanger; Richard Maier; Martin Weger; Anton Haas; Robert Winker; Otto Schmut; Bernhard Paulweber; Bernhard Iglseder; Wilfried Renner; Martina Wiesbauer; Irene Aigner; Danijela Santic; Franz A. Zimmermann; Johannes A. Mayr; Wolfgang Sperl

BackgroundThere is strong and consistent evidence that oxidative stress is crucially involved in the development of atherosclerotic vascular disease. Overproduction of reactive oxygen species (ROS) in mitochondria is an unifying mechanism that underlies micro- and macrovascular atherosclerotic disease. Given the central role of mitochondria in energy and ROS production, mitochondrial DNA (mtDNA) is an obvious candidate for genetic susceptibility studies on atherosclerotic processes. We therefore examined the association between mtDNA haplogroups and coronary artery disease (CAD) as well as diabetic retinopathy.MethodsThis study of Middle European Caucasians included patients with angiographically documented CAD (n = 487), subjects with type 2 diabetes mellitus with (n = 149) or without (n = 78) diabetic retinopathy and control subjects without clinical manifestations of atherosclerotic disease (n = 1527). MtDNA haplotyping was performed using multiplex PCR and subsequent multiplex primer extension analysis for determination of the major European haplogroups. Haplogroup frequencies of patients were compared to those of control subjects without clinical manifestations of atherosclerotic disease.ResultsHaplogroup T was significantly more prevalent among patients with CAD than among control subjects (14.8% vs 8.3%; p = 0.002). In patients with type 2 diabetes, the presence of diabetic retinopathy was also significantly associated with a higher prevalence of haplogroup T (12.1% vs 5.1%; p = 0.046).ConclusionOur data indicate that the mtDNA haplogroup T is associated with CAD and diabetic retinopathy in Middle European Caucasian populations.


Journal of Inherited Metabolic Disease | 2013

Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings

Tobias B. Haack; Boris Rolinski; Birgit Haberberger; Franz A. Zimmermann; Jessica Schum; Valentina Strecker; Elisabeth Graf; Uwe Athing; Thomas Hoppen; Ilka Wittig; Wolfgang Sperl; Peter Freisinger; Johannes A. Mayr; Tim M. Strom; Thomas Meitinger; Holger Prokisch

Defects of mitochondrial oxidative phosphorylation constitute a clinical and genetic heterogeneous group of disorders affecting multiple organ systems at varying age. Biochemical analysis of biopsy material demonstrates isolated or combined deficiency of mitochondrial respiratory chain enzyme complexes. Co-occurrence of impaired activity of the pyruvate dehydrogenase complex has been rarely reported so far and is not yet fully understood. We investigated two siblings presenting with severe neonatal lactic acidosis, hypotonia, and intractable cardiomyopathy; both died within the first months of life. Muscle biopsy revealed a peculiar biochemical defect consisting of a combined deficiency of respiratory chain complexes I, II, and II+III accompanied by a defect of the pyruvate dehydrogenase complex. Joint exome analysis of both affected siblings uncovered a homozygous missense mutation in BOLA3. The causal role of the mutation was validated by lentiviral-mediated expression of the mitochondrial isoform of wildtype BOLA3 in patient fibroblasts, which lead to an increase of both residual enzyme activities and lipoic acid levels. Our results suggest that BOLA3 plays a crucial role in the biogenesis of iron-sulfur clusters necessary for proper function of respiratory chain and 2-oxoacid dehydrogenase complexes. We conclude that broad sequencing approaches combined with appropriate prioritization filters and experimental validation enable efficient molecular diagnosis and have the potential to discover new disease loci.


BMC Cancer | 2010

Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma

René G. Feichtinger; Franz A. Zimmermann; Johannes A. Mayr; Daniel Neureiter; Cornelia Hauser-Kronberger; Freimut H. Schilling; Neil Jones; Wolfgang Sperl; Barbara Kofler

BackgroundSuccinate dehydrogenase (SDH) has been associated with carcinogenesis in pheochromocytoma and paraganglioma. In the present study we investigated components of the oxidative phosphorylation system in human neuroblastoma tissue samples.MethodsSpectrophotometric measurements, immunohistochemical analysis and Western blot analysis were used to characterize the aerobic mitochondrial energy metabolism in neuroblastomas (NB).ResultsCompared to mitochondrial citrate synthase, SDH activity was severely reduced in NB (n = 14) versus kidney tissue. However no pathogenic mutations could be identified in any of the four subunits of SDH. Furthermore, no genetic alterations could be identified in the two novel SDH assembly factors SDHAF1 and SDH5. Alterations in genes encoding nfs-1, frataxin and isd-11 that could lead to a diminished SDH activity have not been detected in NB.ConclusionBecause downregulation of other complexes of the oxidative phosphorylation system was also observed, a more generalized reduction of mitochondrial respiration seems to be present in neuroblastoma in contrast to the single enzyme defect found in hereditary pheochromocytomas.


Frontiers in Genetics | 2015

Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency

Uwe Ahting; Johannes A. Mayr; Arnaud Vanlander; Steven A. Hardy; Saikat Santra; Christine Makowski; Charlotte L. Alston; Franz A. Zimmermann; Lucia Abela; Barbara Plecko; Marianne Rohrbach; Stephanie Spranger; Sara Seneca; Boris Rolinski; Angela Hagendorff; Maja Hempel; Wolfgang Sperl; Thomas Meitinger; Joél Smet; Robert W. Taylor; Rudy Van Coster; Peter Freisinger; Holger Prokisch; Tobias B. Haack

Disorders of the mitochondrial energy metabolism are clinically and genetically heterogeneous. An increasingly recognized subgroup is caused by defective mitochondrial iron–sulfur (Fe–S) cluster biosynthesis, with defects in 13 genes being linked to human disease to date. Mutations in three of them, NFU1, BOLA3, and IBA57, affect the assembly of mitochondrial [4Fe–4S] proteins leading to an impairment of diverse mitochondrial metabolic pathways and ATP production. Patients with defects in these three genes present with lactic acidosis, hyperglycinemia, and reduced activities of respiratory chain complexes I and II, the four lipoic acid-dependent 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). To date, five different NFU1 pathogenic variants have been reported in 15 patients from 12 families. We report on seven new patients from five families carrying compound heterozygous or homozygous pathogenic NFU1 mutations identified by candidate gene screening and exome sequencing. Six out of eight different disease alleles were novel and functional studies were performed to support the pathogenicity of five of them. Characteristic clinical features included fatal infantile encephalopathy and pulmonary hypertension leading to death within the first 6 months of life in six out of seven patients. Laboratory investigations revealed combined defects of pyruvate dehydrogenase complex (five out of five) and respiratory chain complexes I and II+III (four out of five) in skeletal muscle and/or cultured skin fibroblasts as well as increased lactate (five out of six) and glycine concentration (seven out of seven). Our study contributes to a better definition of the phenotypic spectrum associated with NFU1 mutations and to the diagnostic workup of future patients.


Glia | 2014

Alterations of oxidative phosphorylation complexes in astrocytomas

René G. Feichtinger; Serge Weis; Johannes A. Mayr; Franz A. Zimmermann; Reinhard Geilberger; Wolfgang Sperl; Barbara Kofler

The shift in cellular energy production from oxidative phosphorylation (OXPHOS) to glycolysis, even under aerobic conditions, called the Warburg effect, is a feature of most solid tumors. The activity levels of OXPHOS complexes and citrate synthase were determined in astrocytomas. A gradual decrease of citrate synthase and OXPHOS complexes was observed depending on tumor grade. In low‐grade astrocytomas (WHO grade II), enzyme activities of citrate synthase, complex I, and complex V were comparable to those of normal brain tissue. A trend to reduced activities was observed for complexes II–IV. In glioblastoma (WHO grade IV), activities of citrate synthase and complexes I–IV were decreased by 56–92% as compared with normal brain. Immunohistochemical staining for porin revealed that the tumorpil of low‐grade astrocytomas displays characteristics of the mitochondria‐rich neuropil of normal brain tissue. In high‐grade tumors (WHO grades III and IV), the tumorpil was characterized by severe morphologic alterations as well as loss of “pilem” structures. Specific alterations of OXPHOS complexes were observed in all astrocytic tumors by immunohistochemical analysis: 80% of astrocytomas exhibited severe deficiency of complex IV; complex I showed a gradual reduction in amount with increasing tumor grade, whereas complex II showed reduced levels only in high‐grade (WHO grade IV) tumors (9/12); complexes III and V did not show significant alterations compared with normal brain tissue. OXPHOS defects were present not only in the cell bodies of tumor cells but also in the pilem structures, indicating that the ramifications/protuberances (tumorpil) in general originate from tumor cells. GLIA 2014;62:514–525


Mitochondrion | 2015

From ventriculomegaly to severe muscular atrophy: Expansion of the clinical spectrum related to mutations in AIFM1

Matthias Kettwig; Max Schubach; Franz A. Zimmermann; Lars Klinge; Johannes A. Mayr; Saskia Biskup; Wolfgang Sperl; Jutta Gärtner; Peter Huppke

The apoptosis-inducing factor (AIF) functions as a FAD-dependent NADH oxidase in mitochondria. Upon apoptotic stimulation it is released from mitochondria and migrates to the nucleus where it induces chromatin condensation and DNA fragmentation. So far mutations in AIFM1, a X-chromosomal gene coding for AIF, have been described in three families with 11 affected males. We report here on a further patient thereby expanding the clinical and mutation spectrum. In addition, we review the known phenotypes related to AIFM1 mutations. The clinical course in the male patient described here was characterized by phases with rapid deterioration and long phases without obvious progression of disease. At age 2.5 years he developed hearing loss and severe ataxia and at age 10 years muscle wasting, swallowing difficulties, respiratory insufficiency and external opthamoplegia. By next generation sequencing of whole exome we identified a hemizygous missense mutation in the AIFM1 gene, c.727G>T (p.Val243Leu) affecting a highly conserved residue in the FAD-binding domain. Summarizing what is known today, mutations in AIFM1 are associated with a progressive disorder with myopathy, ataxia and neuropathy. Severity varies greatly even within one family with onset of symptoms between birth and adolescence. 3 of 12 patients died before age 5 years while others were still able to walk during young adulthood. Less frequent symptoms were hearing loss, seizures and psychomotor regression. Results from clinical chemistry, brain imaging and muscle biopsy were unspecific and inconsistent.

Collaboration


Dive into the Franz A. Zimmermann's collaboration.

Top Co-Authors

Avatar

Johannes A. Mayr

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Sperl

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Barbara Kofler

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

René G. Feichtinger

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Peter Freisinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Koch

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Manfred Ratschek

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Neil Jones

University of Salzburg

View shared research outputs
Top Co-Authors

Avatar

Olaf Stanger

Innsbruck Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge