Franz J. Brandenburg
University of Passau
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franz J. Brandenburg.
graph drawing | 2012
Franz J. Brandenburg; David Eppstein; Andreas Gleißner; Michael T. Goodrich; Kathrin Hanauer; Josef Reislhuber
A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. It is maximal 1-planar if the addition of any edge violates 1-planarity. Maximal 1-planar graphs have at most 4n−8 edges. We show that there are sparse maximal 1-planar graphs with only
graph drawing | 2015
Franz J. Brandenburg; Walter Didimo; William S. Evans; Philipp Kindermann; Giuseppe Liotta; Fabrizio Montecchiani
\frac{45}{17} n + \mathcal{O}(1)
graph drawing | 2013
Md. Jawaherul Alam; Franz J. Brandenburg; Stephen G. Kobourov
edges. With a fixed rotation system there are maximal 1-planar graphs with only
Journal of Graph Algorithms and Applications | 2015
Christopher Auer; Franz J. Brandenburg; Andreas Gleißner; Josef Reislhuber
\frac{7}{3} n + \mathcal{O}(1)
Algorithmica | 2018
Franz J. Brandenburg
edges. This is sparser than maximal planar graphs. There cannot be maximal 1-planar graphs with less than
graph drawing | 2013
Christopher Auer; Christian Bachmaier; Franz J. Brandenburg; Andreas Gleiβner; Kathrin Hanauer; Daniel Neuwirth; Josef Reislhuber
\frac{21}{10} n - \mathcal{O}(1)
graph drawing | 1997
Franz J. Brandenburg
edges and less than
Journal of Combinatorial Optimization | 2013
Franz J. Brandenburg; Andreas Gleiβner; Andreas Hofmeier
\frac{28}{13} n - \mathcal{O}(1)
workshop on graph theoretic concepts in computer science | 2017
Patrizio Angelini; Michael A. Bekos; Franz J. Brandenburg; Giordano Da Lozzo; Giuseppe Di Battista; Walter Didimo; Giuseppe Liotta; Fabrizio Montecchiani; Ignaz Rutter
edges with a fixed rotation system. Furthermore, we prove that a maximal 1-planar rotation system of a graph uniquely determines its 1-planar embedding.
Discrete Applied Mathematics | 2017
Christian Bachmaier; Franz J. Brandenburg; Kathrin Hanauer; Daniel Neuwirth; Josef Reislhuber
IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossedi¾?at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graphi¾?G withi¾?n vertices, we present an On-time algorithm that computes a straight-line drawing ofi¾?G in quadratic area, and an