Franziska Beran
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franziska Beran.
The Plant Cell | 2013
Jean-François Ginglinger; Benoît Boachon; René Höfer; Christian Paetz; Tobias G. Köllner; Raphaël Lugan; Jérôme Mutterer; M. Fischer; Pascaline Ullmann; Franziska Beran; P. Claudel; R. Baltenweck; Laurence Miesch; Francel Verstappen; Harro J. Bouwmeester; Michel Miesch; Bernd Schneider; Jonathan Gershenzon; J. Ehlting; Danièle Werck-Reichhart
This work characterizes two cytochrome P450s and two monoterpene synthases that are coexpressed in flowers and thus predicted to be involved in monoterpenoid metabolism. The results show that despite Arabidopsis thaliana being autogamous, its flowers exhibit extensive linalool metabolism. The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Franziska Beran; Yannick Pauchet; Grit Kunert; Michael Reichelt; Natalie Wielsch; Heiko Vogel; Andreas Reinecke; Aleš Svatoš; Inga Mewis; Daniela Schmid; Srinivasan Ramasamy; Christian Ulrichs; Bill S. Hansson; Jonathan Gershenzon; David G. Heckel
Significance Associations of plants and herbivores are regarded as the result of coevolution, which has produced an astonishing diversity of plant defenses and corresponding insect counteradaptations. We focus on the leaf beetle Phyllotreta striolata, which is adapted to the glucosinolate-myrosinase system present in its cruciferous host plants. We show that P. striolata adults not only selectively sequester intact glucosinolates from their host plants but also express their own myrosinase, a member of the β-glucosidase family capable of hydrolyzing glucosinolates to form toxic degradation products. Our results reveal the convergent evolution of a glucosinolate-myrosinase system in P. striolata that enables this herbivore to use glucosinolate hydrolysis products for its own purposes. The ability of a specialized herbivore to overcome the chemical defense of a particular plant taxon not only makes it accessible as a food source but may also provide metabolites to be exploited for communication or chemical defense. Phyllotreta flea beetles are adapted to crucifer plants (Brassicales) that are defended by the glucosinolate-myrosinase system, the so-called “mustard-oil bomb.” Tissue damage caused by insect feeding brings glucosinolates into contact with the plant enzyme myrosinase, which hydrolyzes them to form toxic compounds, such as isothiocyanates. However, we previously observed that Phyllotreta striolata beetles themselves produce volatile glucosinolate hydrolysis products. Here, we show that P. striolata adults selectively accumulate glucosinolates from their food plants to up to 1.75% of their body weight and express their own myrosinase. By combining proteomics and transcriptomics, a gene responsible for myrosinase activity in P. striolata was identified. The major substrates of the heterologously expressed myrosinase were aliphatic glucosinolates, which were hydrolyzed with at least fourfold higher efficiency than aromatic and indolic glucosinolates, and β-O-glucosides. The identified beetle myrosinase belongs to the glycoside hydrolase family 1 and has up to 76% sequence similarity to other β-glucosidases. Phylogenetic analyses suggest species-specific diversification of this gene family in insects and an independent evolution of the beetle myrosinase from other insect β-glucosidases.
The Plant Cell | 2015
Benoît Boachon; Robert R. Junker; Laurence Miesch; Jean-Etienne Bassard; René Höfer; Robin Caillieaudeaux; Dana E. Seidel; Agnès Lesot; Clément F. Heinrich; Jean-François Ginglinger; Lionel Allouche; Bruno Vincent; Dinar S.C. Wahyuni; Christian Paetz; Franziska Beran; Michel Miesch; Bernd Schneider; Kirsten A. Leiss; Danièle Werck-Reichhart
A cytochrome P450 in the CYP76 family modulates linalool emission and linalool oxide (including lilac compounds) formation in Arabidopsis, making flowers repellent rather than attractive to insects. The acyclic monoterpene alcohol linalool is one of the most frequently encountered volatile compounds in floral scents. Various linalool oxides are usually emitted along with linalool, some of which are cyclic, such as the furanoid lilac compounds. Recent work has revealed the coexistence of two flower-expressed linalool synthases that produce the (S)- or (R)-linalool enantiomers and the involvement of two P450 enzymes in the linalool oxidation in the flowers of Arabidopsis thaliana. Partially redundant enzymes may also contribute to floral linalool metabolism. Here, we provide evidence that CYP76C1 is a multifunctional enzyme that catalyzes a cascade of oxidation reactions and is the major linalool metabolizing oxygenase in Arabidopsis flowers. Based on the activity of the recombinant enzyme and mutant analyses, we demonstrate its prominent role in the formation of most of the linalool oxides identified in vivo, both as volatiles and soluble conjugated compounds, including 8-hydroxy, 8-oxo, and 8-COOH-linalool, as well as lilac aldehydes and alcohols. Analysis of insect behavior on CYP76C1 mutants and in response to linalool and its oxygenated derivatives demonstrates that CYP76C1-dependent modulation of linalool emission and production of linalool oxides contribute to reduced floral attraction and favor protection against visitors and pests.
Journal of Chemical Ecology | 2011
Franziska Beran; Inga Mewis; Ramasamy Srinivasan; Jiří Svoboda; Christian Vial; Hervé Mosimann; Wilhelm Boland; Carmen Büttner; Christian Ulrichs; Bill S. Hansson; Andreas Reinecke
The chrysomelid beetle Phyllotreta striolata is an important pest of Brassicaceae in Southeast Asia and North America. Here, we identified the aggregation pheromone of a population of P. striolata from Taiwan, and host plant volatiles that interact with the pheromone. Volatiles emitted by feeding male P. striolata attracted males and females in the field. Headspace volatile analyses revealed that six sesquiterpenes were emitted specifically by feeding males. Only one of these, however, elicited an electrophysiological response from antennae of both sexes. A number of host plant volatiles, e.g., 1-hexanol, (Z)-3-hexen-1-ol, and the glucosinolate hydrolysis products allyl isothiocyanate (AITC), 3-butenyl isothiocyanate, and 4-pentenyl isothiocyanate also elicited clear responses from the antenna. The active male-specific compound was identified as (+)-(6R,7S)-himachala-9,11-diene by chiral stationary phase gas-chromatography with coupled mass spectrometry, and by comparison with reference samples from Abies nordmanniana, which is known to produce the corresponding enantiomer. The pheromone compound was synthesized starting from (–)-α-himachalene isolated from Cedrus atlantica. Under field conditions, the activity of the synthetic pheromone required concomitant presence of the host plant volatile allyl isothiocyanate. However, both synthetic (+)-(6R,7S)-himachala-9,11-diene alone and in combination with AITC were attractive in a two-choice laboratory assay devoid of other natural olfactory stimuli. We hypothesize that P. striolata adults respond to the pheromone only if specific host volatiles are present. In the same laboratory set up, more beetles were attracted by feeding males than by the synthetic stimuli. Thus, further research will be necessary to reveal the components of a more complex blend of host or male-produced semiochemicals that might enhance trap attractiveness in the field.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Franziska Beran; Peter Rahfeld; Katrin Luck; Raimund Nagel; Heiko Vogel; Natalie Wielsch; Sandra Irmisch; Srinivasan Ramasamy; Jonathan Gershenzon; David G. Heckel; Tobias G. Köllner
Significance Whether insect sesquiterpenes are synthesized de novo, derived from plant precursors, or produced by symbionts is often unknown. We identified an evolutionarily novel terpene synthase gene family in the striped flea beetle, a notorious pest of Brassica crops in North America and Asia, and one of these genes was shown to be directly involved in the biosynthesis of the male-specific sesquiterpene aggregation pheromone. Phylogenetic and gene structure analyses indicate that an expansion of the trans-isoprenyl diphosphate synthase gene family in the ancestor of the subfamily Galerucinae enabled functional diversification toward this terpene synthase gene family. These insights into how flea beetles synthesize their aggregation pheromones may lead to new approaches for pest management. Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.
Current opinion in insect science | 2016
Meredith C. Schuman; Nicole M. van Dam; Franziska Beran; W. Stanley Harpole
Plants, perhaps Earths most accomplished chemists, produce thousands of specialized metabolites having no direct role in cell division or growth. These phytochemicals vary by taxon, with many taxa producing characteristic substance classes; and within taxa, with individual variation in structural variety and production patterns. Observations of corresponding variation in herbivore metabolism, behavior, and diet breadth motivated the development of chemical ecology research. We discuss the importance of plant biodiversity in general and phytochemical diversity in particular for biodiversity and ecological interactions at higher trophic levels. We then provide an overview of the descriptive, molecular and analytical tools which allow modern biologists to investigate phytochemical diversity and its effects on higher trophic levels, from physiological mechanisms to ecological communities.
Current Biology | 2017
Wenwu Zhou; Anke Kügler; Erica McGale; Alexander Haverkamp; Markus Knaden; Han Guo; Franziska Beran; Felipe Yon; Ran Li; Nathalie Lackus; Tobias G. Köllner; Julia Bing; Meredith C. Schuman; Bill S. Hansson; Danny Kessler; Ian T. Baldwin; Shuqing Xu
More than 87% of flowering plant species are animal-pollinated [1] and produce floral scents and other signals to attract pollinators. These floral cues may however also attract antagonistic visitors, including herbivores [2]. The dilemma is exacerbated when adult insects pollinate the same plant that their larvae consume. It remains largely unclear how plants maximize their fitness under these circumstances. Here we show that in the night-flowering wild tobacco Nicotiana attenuata, the emission of a sesquiterpene, (E)-α-bergamotene, in flowers increases adult Manduca sexta moth-mediated pollination success, while the same compound in leaves is known to mediate indirect defense against M. sexta larvae [3, 4]. Forward and reverse genetic analyses demonstrated that both herbivory-induced and floral (E)-α-bergamotene are regulated by the expression of a monoterpene-synthase-derived sesquiterpene synthase (NaTPS38). The expression pattern of NaTPS38 also accounts for variation in (E)-α-bergamotene emission among natural accessions. These results highlight that differential expression of a single gene that results in tissue-specific emission of one compound contributes to resolving the dilemma for plants when their pollinators are also herbivores. Furthermore, this study provides genetic evidence that pollinators and herbivores interactively shape the evolution of floral signals and plant defense.
Journal of Chemical Ecology | 2015
Stefanie Schläger; Franziska Beran; Astrid T. Groot; Christian Ulrichs; Daniel Veit; Christian Paetz; Bhanu R. M. Karumuru; Ramasamy Srinivasan; Monika Schreiner; Inga Mewis
The legume pod borer, Maruca vitrata, is a pantropical pest on leguminous crops. (E,E)-10,12-Hexadecadienal, (E,E)-10,12-hexadecadienol, and (E)-10-hexadecenal were described previously as sex pheromone components for this nocturnal moth. A blend of these components in a ratio of 100:5:5 attracted males in field trapping experiments in Benin, but not in Taiwan, Thailand, or Vietnam. This finding suggests geographic variation in the pheromone blend between Asian and West African populations of M. vitrata. We, therefore, determined the pheromone compositions of single pheromone glands of females from the three Asian regions and from Benin by gas chromatography—mass spectrometry. Additionally, we compared the responses of males from Taiwan and Benin to calling females and to gland extracts of females from both regions in laboratory no-choice and two-choice assays. Chemical analysis revealed the presence of (E,E)-10,12-hexadecadienal and (E,E)-10,12-hexadecadienol, as well as the absence of (E)-10-hexadecenal in all four populations. The relative amounts of the detected compounds did not vary significantly among the insect populations. The behavioral bioassays showed that Taiwanese and Beninese males were similarly attracted to females from both regions, as well as to their gland extracts. As a result, we did not find geographic variation in the sexual communication system of M. vitrata between West African and Asian insect populations.
Journal of Chemical Ecology | 2014
Franziska Beran; Sven Geiselhardt; Gloria Vargas; Donald M. Windsor
Astigmatid mites in the family Canestriniidae are often closely associated with tortoise leaf beetles (Chrysomelidae: Cassidinae). For example, the survival of the commensal canestriniid mite Grandiella rugosita depends on dispersal to the cassidine beetle Acromis sparsa. Here, we tested whether the beetle cuticle provides chemical cues for host recognition for G. rugosita. In two-choice assays with cuticular extracts from A. sparsa and the co-occurring, non-host cassidine Chelymorpha alternans offered simultaneously, mites clearly preferred the area treated with extract from their host. In no-choice assays, G. rugosita spent three times longer and moved three times slower on host cuticular extracts compared to non-host extracts and the solvent control. Analyses of the chemical composition of cuticular extracts from males and females of A. sparsa and C. alternans revealed complex mixtures of mainly methyl branched hydrocarbons, which clearly separated both species in a principal component analysis. We found no qualitative difference between males and females of either species, but in C. alternans quantitative differences between males and females were detected. Our results demonstrate that G. rugosita is able to discriminate between cuticular extracts from its host A. sparsa and the non-host C. alternans. The components eliciting the observed arrestment behavior remain to be determined.
Journal of Chemical Ecology | 2016
Franziska Beran; Guillermo Hugo Jimenez-Aleman; Mei-ying Lin; Yun-Che Hsu; Inga Mewis; Ramasamy Srinivasan; Christian Ulrichs; Wilhelm Boland; Bill S. Hansson; Andreas Reinecke
Aggregations of the striped flea beetle Phyllotreta striolata on their crucifer host plants are mediated by volatiles emitted from feeding males. The male-specific sesquiterpene, (6R,7S)-himachala-9,11-diene (compound A), was shown previously to be physiologically and behaviorally active, but compound A was attractive only when combined with unnaturally high doses of the host plant volatile allyl isothiocyanate (AITC) in field trapping experiments. This indicated that our understanding of the chemical communication in this species is incomplete. Another male-specific sesquiterpenoid, (3S,9R,9aS)-3-hydroxy-3,5,5,9-tetramethyl-5,6,7,8,9,9a-hexahydro-1H-benzo[7]annulen-2(3H)-one (compound G), has been reported from an American P. striolata population. We confirmed the presence of compound G, and investigated its interaction with compound A and AITC in a P. striolata population in Taiwan. Compound G was attractive to Taiwanese P. striolata in laboratory bioassays, but significantly more beetles were attracted to a blend of compounds A and G. Under the same conditions, P. striolata showed no preference for the blend of A and G combined with a range of doses of AITC over the sesquiterpenoid blend alone. The sesquiterpenoid blend was tested further in field trapping experiments and attracted significantly more beetles than traps baited with compound A and ecologically relevant amounts of AITC. We conclude that A and G are components of the male-specific aggregation pheromone of P. striolata in Taiwan, and that the attractiveness of the pheromone is not reliant on the presence of AITC. Our results further indicate that the male-specific sesquiterpenoid blends differ qualitatively between the Taiwanese and American populations of P. striolata.