Franziska Goer
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franziska Goer.
Neuropsychopharmacology | 2016
Roselinde H. Kaiser; Susan Whitfield-Gabrieli; Daniel G. Dillon; Franziska Goer; Miranda Beltzer; Jared Minkel; Moria J. Smoski; Gabriel S. Dichter; Diego A. Pizzagalli
Major depressive disorder (MDD) is characterized by abnormal resting-state functional connectivity (RSFC), especially in medial prefrontal cortical (MPFC) regions of the default network. However, prior research in MDD has not examined dynamic changes in functional connectivity as networks form, interact, and dissolve over time. We compared unmedicated individuals with MDD (n=100) to control participants (n=109) on dynamic RSFC (operationalized as SD in RSFC over a series of sliding windows) of an MPFC seed region during a resting-state functional magnetic resonance imaging scan. Among participants with MDD, we also investigated the relationship between symptom severity and RSFC. Secondary analyses probed the association between dynamic RSFC and rumination. Results showed that individuals with MDD were characterized by decreased dynamic (less variable) RSFC between MPFC and regions of parahippocampal gyrus within the default network, a pattern related to sustained positive connectivity between these regions across sliding windows. In contrast, the MDD group exhibited increased dynamic (more variable) RSFC between MPFC and regions of insula, and higher severity of depression was related to increased dynamic RSFC between MPFC and dorsolateral prefrontal cortex. These patterns of highly variable RSFC were related to greater frequency of strong positive and negative correlations in activity across sliding windows. Secondary analyses indicated that increased dynamic RSFC between MPFC and insula was related to higher levels of recent rumination. These findings provide initial evidence that depression, and ruminative thinking in depression, are related to abnormal patterns of fluctuating communication among brain systems involved in regulating attention and self-referential thinking.
Neuropsychopharmacology | 2016
Christian A. Webb; Daniel G. Dillon; Pia Pechtel; Franziska Goer; Laura Murray; Quentin J. M. Huys; Maurizio Fava; Myrna Weissman; Ramin V. Parsey; Benji T. Kurian; Phillip Adams; Sarah Weyandt; Joseph M. Trombello; Bruce D. Grannemann; Crystal Cooper; Patricia J. Deldin; Craig E. Tenke; Madhukar H. Trivedi; Gerard E. Bruder; Diego A. Pizzagalli
Major depressive disorder (MDD) is clinically, and likely pathophysiologically, heterogeneous. A potentially fruitful approach to parsing this heterogeneity is to focus on promising endophenotypes. Guided by the NIMH Research Domain Criteria initiative, we used source localization of scalp-recorded EEG resting data to examine the neural correlates of three emerging endophenotypes of depression: neuroticism, blunted reward learning, and cognitive control deficits. Data were drawn from the ongoing multi-site EMBARC study. We estimated intracranial current density for standard EEG frequency bands in 82 unmedicated adults with MDD, using Low-Resolution Brain Electromagnetic Tomography. Region-of-interest and whole-brain analyses tested associations between resting state EEG current density and endophenotypes of interest. Neuroticism was associated with increased resting gamma (36.5–44 Hz) current density in the ventral (subgenual) anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC). In contrast, reduced cognitive control correlated with decreased gamma activity in the left dorsolateral prefrontal cortex (dlPFC), decreased theta (6.5–8 Hz) and alpha2 (10.5–12 Hz) activity in the dorsal ACC, and increased alpha2 activity in the right dlPFC. Finally, blunted reward learning correlated with lower OFC and left dlPFC gamma activity. Computational modeling of trial-by-trial reinforcement learning further indicated that lower OFC gamma activity was linked to reduced reward sensitivity. Three putative endophenotypes of depression were found to have partially dissociable resting intracranial EEG correlates, reflecting different underlying neural dysfunctions. Overall, these findings highlight the need to parse the heterogeneity of MDD by focusing on promising endophenotypes linked to specific pathophysiological abnormalities.
Psychophysiology | 2017
Craig E. Tenke; Jürgen Kayser; Pia Pechtel; Christian A. Webb; Daniel G. Dillon; Franziska Goer; Laura Murray; Patricia J. Deldin; Benji T. Kurian; Ramin V. Parsey; Madhukar H. Trivedi; Maurizio Fava; Myrna Weissman; Melvin G. McInnis; Karen Abraham; Jorge E. Alvarenga; Daniel M. Alschuler; Crystal Cooper; Diego A. Pizzagalli; Gerard E. Bruder
Growing evidence suggests that loudness dependency of auditory evoked potentials (LDAEP) and resting EEG alpha and theta may be biological markers for predicting response to antidepressants. In spite of this promise, little is known about the joint reliability of these markers, and thus their clinical applicability. New standardized procedures were developed to improve the compatibility of data acquired with different EEG platforms, and used to examine test-retest reliability for the three electrophysiological measures selected for a multisite project-Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). Thirty-nine healthy controls across four clinical research sites were tested in two sessions separated by about 1 week. Resting EEG (eyes-open and eyes-closed conditions) was recorded and LDAEP measured using binaural tones (1000 Hz, 40 ms) at five intensities (60-100 dB SPL). Principal components analysis of current source density waveforms reduced volume conduction and provided reference-free measures of resting EEG alpha and N1 dipole activity to tones from auditory cortex. Low-resolution electromagnetic tomography (LORETA) extracted resting theta current density measures corresponding to rostral anterior cingulate (rACC), which has been implicated in treatment response. There were no significant differences in posterior alpha, N1 dipole, or rACC theta across sessions. Test-retest reliability was .84 for alpha, .87 for N1 dipole, and .70 for theta rACC current density. The demonstration of good-to-excellent reliability for these measures provides a template for future EEG/ERP studies from multiple testing sites, and an important step for evaluating them as biomarkers for predicting treatment response.
American Journal of Psychiatry | 2017
Roee Admon; Roselinde H. Kaiser; Daniel G. Dillon; Miranda Beltzer; Franziska Goer; David P. Olson; Gordana Dragan Vitaliano; Diego A. Pizzagalli
OBJECTIVE Major depressive disorder is characterized by reduced reward-related striatal activation and dysfunctional reward learning, putatively reflecting decreased dopaminergic signaling. The goal of this study was to test whether a pharmacological challenge designed to facilitate dopaminergic transmission can enhance striatal responses to reward and improve reward learning in depressed individuals. METHOD In a double-blind placebo-controlled design, 46 unmedicated depressed participants and 43 healthy control participants were randomly assigned to receive either placebo or a single low dose (50 mg) of the D2/D3 receptor antagonist amisulpride, which is believed to increase dopamine signaling through presynaptic autoreceptor blockade. To investigate the effects of increased dopaminergic transmission on reward-related striatal function and behavior, a monetary incentive delay task (in conjunction with functional MRI) and a probabilistic reward learning task were administered at absorption peaks of amisulpride. RESULTS Depressed participants selected previously rewarded stimuli less frequently than did control participants, indicating reduced reward learning, but this effect was not modulated by amisulpride. Relative to depressed participants receiving placebo (and control participants receiving amisulpride), depressed participants receiving amisulpride exhibited increased striatal activation and potentiated corticostriatal functional connectivity between the nucleus accumbens and the midcingulate cortex in response to monetary rewards. Stronger corticostriatal connectivity in response to rewards predicted better reward learning among depressed individuals receiving amisulpride as well as among control participants receiving placebo. CONCLUSIONS Acute enhancement of dopaminergic transmission potentiated reward-related striatal activation and corticostriatal functional connectivity in depressed individuals but had no behavioral effects. Taken together, the results suggest that targeted pharmacological treatments may normalize neural correlates of reward processing in depression; despite such acute effects on neural function, behavioral modification may require more chronic exposure. This is consistent with previous reports that antidepressant effects of amisulpride in depression emerged after sustained administration.
Psychological Medicine | 2015
Daniel G. Dillon; Thomas V. Wiecki; Pia Pechtel; Christian A. Webb; Franziska Goer; Laura Murray; Madhukar H. Trivedi; Maurizio Fava; Myrna M. Weissman; Ramin V. Parsey; Benji T. Kurian; Phillip Adams; Thomas Carmody; Sarah Weyandt; Kathy Shores-Wilson; Marisa Toups; Melvin G. McInnis; Maria A. Oquendo; Cristina Cusin; Patricia J. Deldin; Gerard E. Bruder; Diego A. Pizzagalli
BACKGROUND Depression is characterized by poor executive function, but - counterintuitively - in some studies, it has been associated with highly accurate performance on certain cognitively demanding tasks. The psychological mechanisms responsible for this paradoxical finding are unclear. To address this issue, we applied a drift diffusion model (DDM) to flanker task data from depressed and healthy adults participating in the multi-site Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for Depression (EMBARC) study. METHOD One hundred unmedicated, depressed adults and 40 healthy controls completed a flanker task. We investigated the effect of flanker interference on accuracy and response time, and used the DDM to examine group differences in three cognitive processes: prepotent response bias (tendency to respond to the distracting flankers), response inhibition (necessary to resist prepotency), and executive control (required for execution of correct response on incongruent trials). RESULTS Consistent with prior reports, depressed participants responded more slowly and accurately than controls on incongruent trials. The DDM indicated that although executive control was sluggish in depressed participants, this was more than offset by decreased prepotent response bias. Among the depressed participants, anhedonia was negatively correlated with a parameter indexing the speed of executive control (r = -0.28, p = 0.007). CONCLUSIONS Executive control was delayed in depression but this was counterbalanced by reduced prepotent response bias, demonstrating how participants with executive function deficits can nevertheless perform accurately in a cognitive control task. Drawing on data from neural network simulations, we speculate that these results may reflect tonically reduced striatal dopamine in depression.
Cerebral Cortex | 2017
Roselinde H. Kaiser; Michael T. Treadway; Dustin Wooten; Poornima Kumar; Franziska Goer; Laura Murray; Miranda Beltzer; Pia Pechtel; Alexis E. Whitton; Andrew L. Cohen; Nathaniel M. Alpert; Georges El Fakhri; Marc D. Normandin; Diego A. Pizzagalli
Prior studies have shown that dopamine (DA) functioning in frontostriatal circuits supports reinforcement learning (RL), as phasic DA activity in ventral striatum signals unexpected reward and may drive coordinated activity of striatal and orbitofrontal regions that support updating of action plans. However, the nature of DA functioning in RL is complex, in particular regarding the role of DA clearance in RL behavior. Here, in a multi-modal neuroimaging study with healthy adults, we took an individual differences approach to the examination of RL behavior and DA clearance mechanisms in frontostriatal learning networks. We predicted that better RL would be associated with decreased striatal DA transporter (DAT) availability and increased intrinsic functional connectivity among DA-rich frontostriatal regions. In support of these predictions, individual differences in RL behavior were related to DAT binding potential in ventral striatum and resting-state functional connectivity between ventral striatum and orbitofrontal cortex. Critically, DAT binding potential had an indirect effect on reinforcement learning behavior through frontostriatal connectivity, suggesting potential causal relationships across levels of neurocognitive functioning. These data suggest that individual differences in DA clearance and frontostriatal coordination may serve as markers for RL, and suggest directions for research on psychopathologies characterized by altered RL.
JAMA Psychiatry | 2018
Diego A. Pizzagalli; Christian A. Webb; Daniel G. Dillon; Craig E. Tenke; Jürgen Kayser; Franziska Goer; Maurizio Fava; Myrna Weissman; Ramin V. Parsey; Phil Adams; Joseph M. Trombello; Crystal Cooper; Patricia J. Deldin; Maria A. Oquendo; Melvin G. McInnis; Thomas Carmody; Gerard E. Bruder; Madhukar H. Trivedi
Importance Major depressive disorder (MDD) remains challenging to treat. Although several clinical and demographic variables have been found to predict poor antidepressant response, these markers have not been robustly replicated to warrant implementation in clinical care. Increased pretreatment rostral anterior cingulate cortex (rACC) theta activity has been linked to better antidepressant outcomes. However, no prior study has evaluated whether this marker has incremental predictive validity over clinical and demographic measures. Objective To determine whether increased pretreatment rACC theta activity would predict symptom improvement regardless of randomization arm. Design, Setting, and Participants A multicenter randomized clinical trial enrolled outpatients without psychosis and with chronic or recurrent MDD between July 29, 2011, and December 15, 2015 (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care [EMBARC]). Patients were consecutively recruited from 4 university hospitals: 634 patients were screened, 296 were randomized to receive sertraline hydrochloride or placebo, 266 had electroencephalographic (EEG) recordings, and 248 had usable EEG data. Resting EEG data were recorded at baseline and 1 week after trial onset, and rACC theta activity was extracted using source localization. Intent-to-treat analysis was conducted. Data analysis was performed from October 7, 2016, to January 19, 2018. Interventions An 8-week course of sertraline or placebo. Main Outcomes and Measures The 17-item Hamilton Rating Scale for Depression score (assessed at baseline and weeks 1, 2, 3, 4, 6, and 8). Results The 248 participants (160 [64.5%] women, 88 [35.5%] men) with usable EEG data had a mean (SD) age of 36.75 (13.15) years. Higher rACC theta activity at both baseline (b = −1.05; 95% CI, −1.77 to −0.34; P = .004) and week 1 (b = −0.83; 95% CI, −1.60 to −0.06; P < .04) predicted greater depressive symptom improvement, even when controlling for clinical and demographic variables previously linked with treatment outcome. These effects were not moderated by treatment arm. The rACC theta marker, in combination with clinical and demographic variables, accounted for an estimated 39.6% of the variance in symptom change (with 8.5% of the variance uniquely attributable to the rACC theta marker). Conclusions and Relevance Increased pretreatment rACC theta activity represents a nonspecific prognostic marker of treatment outcome. This is the first study to date to demonstrate that rACC theta activity has incremental predictive validity. Trial Registration clinicaltrials.gov Identifier: NCT01407094
Psychological Medicine | 2017
R. H. Kaiser; R. Clegg; Franziska Goer; P. Pechtel; Miranda Beltzer; Gordana Dragan Vitaliano; David P. Olson; Martin H. Teicher; Diego A. Pizzagalli
BACKGROUND Exposure to threat-related early life stress (ELS) has been related to vulnerability for stress-related disorders in adulthood, putatively via disrupted corticolimbic circuits involved in stress response and regulation. However, previous research on ELS has not examined both the intrinsic strength and flexibility of corticolimbic circuits, which may be particularly important for adaptive stress responding, or associations between these dimensions of corticolimbic dysfunction and acute stress response in adulthood. METHODS Seventy unmedicated women varying in history of threat-related ELS completed a functional magnetic resonance imaging scan to evaluate voxelwise static (overall) and dynamic (variability over a series of sliding windows) resting-state functional connectivity (RSFC) of bilateral amygdala. In a separate session and subset of participants (n = 42), measures of salivary cortisol and affect were collected during a social-evaluative stress challenge. RESULTS Higher severity of threat-related ELS was related to more strongly negative static RSFC between amygdala and left dorsolateral prefrontal cortex (DLPFC), and elevated dynamic RSFC between amygdala and rostral anterior cingulate cortex (rACC). Static amygdala-DLPFC antagonism mediated the relationship between higher severity of threat-related ELS and blunted cortisol response to stress, but increased dynamic amygdala-rACC connectivity weakened this mediated effect and was related to more positive post-stress mood. CONCLUSIONS Threat-related ELS was associated with RSFC within lateral corticolimbic circuits, which in turn was related to blunted physiological response to acute stress. Notably, increased flexibility between the amygdala and rACC compensated for this static disruption, suggesting that more dynamic medial corticolimbic circuits might be key to restoring healthy stress response.
Neuropsychopharmacology | 2018
Poornima Kumar; Franziska Goer; Laura Murray; Daniel G. Dillon; Miranda Beltzer; Andrew L. Cohen; Nancy Hall Brooks; Diego A. Pizzagalli
Anhedonia (hyposensitivity to rewards) and negative bias (hypersensitivity to punishments) are core features of major depressive disorder (MDD), which could stem from abnormal reinforcement learning. Emerging evidence highlights blunted reward learning and reward prediction error (RPE) signaling in the striatum in MDD, although inconsistencies exist. Preclinical studies have clarified that ventral tegmental area (VTA) neurons encode RPE and habenular neurons encode punishment prediction error (PPE), which are then transmitted to the striatum and cortex to guide goal-directed behavior. However, few studies have probed striatal activation, and functional connectivity between VTA-striatum and VTA-habenula during reward and punishment learning respectively, in unmedicated MDD. To fill this gap, we acquired fMRI data from 25 unmedicated MDD and 26 healthy individuals during a monetary instrumental learning task and utilized a computational modeling approach to characterize underlying neural correlates of RPE and PPE. Relative to controls, MDD individuals showed impaired reward learning, blunted RPE signal in the striatum and overall reduced VTA-striatal connectivity to feedback. Critically, striatal RPE signal was increasingly blunted with more major depressive episodes (MDEs). No group differences emerged in PPE signals in the habenula and VTA or in connectivity between these regions. However, PPE signals in the habenula correlated positively with number of MDEs. These results highlight impaired reward learning, disrupted RPE signaling in the striatum (particularly among individuals with more lifetime MDEs) as well as reduced VTA-striatal connectivity in MDD. Collectively, these findings highlight reward-related learning deficits in MDD and their underlying pathophysiology.
Clinical psychological science | 2018
Roselinde H. Kaiser; Hannah R. Snyder; Franziska Goer; Rachel Clegg; Manon L. Ironside; Diego A. Pizzagalli
Depressed individuals exhibit biased attention to negative emotional information. However, much remains unknown about (a) the neurocognitive mechanisms of attention bias (e.g., qualities of negative information that evoke attention bias or functional brain network dynamics that may reflect a propensity for biased attention) and (b) distinctions in the types of attention bias related to different dimensions of depression (e.g., ruminative depression). Here, in 50 women, clinical depression was associated with facilitated processing of negative information only when such information was self-descriptive and task-relevant. However, among depressed individuals, trait rumination was associated with biases toward negative self-descriptive information regardless of task goals, especially when negative self-descriptive material was paired with self-referential images that should be ignored. Attention biases in ruminative depression were mediated by dynamic variability in frontoinsular resting-state functional connectivity. These findings highlight potential cognitive and functional network mechanisms of attention bias specifically related to the ruminative dimension of depression.